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Abstract

In the development of numerical schemes for compressible multifluids, the treatment
of the interface is very important. In this paper, we proposed a numerical method
based on interface interactions where the interface conditions are determined by
the real interface interactions and the ghost cell states by hypothetical ”ghost”
interactions. We construct the algorithm based on the ghost fluid method (GFM)
(Fedkiw et al, 1999b). A level set function is used to track the interface with further
modification to the re-initialization procedure to achieve higher accuracy. Extensive
tests in 1D are carried out and with the 2D examples suggest that the present
scheme possesses greater robustness than the original GFM while still keeping to
its simplicity.

1 Introduction

Various numerical methods have been developed to simulate and study the
dynamics of compressible multifluids in a wide range of high speed flow phe-
nomena, such as the dynamics and the stability of shock interface interaction,
supersonic mixing processes, high speed bubbly flows, underwater explosion
and many others. Invariably, a relative dominant difficulty for these numerical
computations is the treatment of material interfaces. For Eulerian schemes, in
general, there are two main approaches: one is the rather complicated front
tracking method in which the interface is tracked as an internal moving bound-
ary and a non-smeared interface can be materialized; the other is the relatively
simple front capturing method in which the interface is defined as a steep gra-
dient and hence the latter is allowed to be smeared over a narrow band. Good
summaries on multifluids interface treatment may be found in Abgrall and
Karni (2001) and Glimm et al(1999).

To obtain a non-smeared interface and avoid the complexity of front tracking,
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the employment of level set function enables a combination of the above two
methods (Osher and Sethain, 1988), in which the interface is treated as inner
boundaries and the front movement is captured by a level set function. In the
original work by Mulder et al (1992), the interface is still allowed to be smeared
to a certain thickness artificially. In Davis (1992), Cocchi and Saurel (1997)
and Liu et al (2001a, 2001b), smearing at the interface is avoided by solving
the Riemann problem to correct for the numerical flux near the interface.
However, as noted by Fedkiw et al (1999b), these schemes can be and is
usually fairly intricate and can perhaps only be extended to multidimension
with dimensional splitting in time.

The ghost fluid method (GFM) (Fedkiw et al, 1999b), on the other hand,
presents a fairly simple way to implement in multidimension and with mul-
tilevel time integrals. The GFM, however, faces some difficulties when there
are large differences of states or material properties at the interface. In these
said cases, the thermodynamically similarity of the ”ghost fluid” cells can not
be assured and the method may suffer from large error or serious oscillations
near the interface (Liu et al, 2002). Abgrall and Karni (2001) proposed another
similar but simpler single fluid method (SFM). However, the SFM may not be
suitable when there is density limitation in the equation of states like Tait’s
equation for the water medium. As will be shown in this paper, SFM encoun-
ters essentially the same difficulties as the GFM. Fedkiw (2002) presented a
modified GFM for the air-water interaction which eliminates the oscillations
at the air-water interface. However, this modified GFM seems to be air-water
interaction specific such that there is a very large sound impedance change
across the interface. Recently, Liu et al (2002) proposed a method which re-
quires solving the full Riemann problems near the interface. In order to avoid
serious oscillations, the proposed interface states for the associated Riemann
problems have to be applied to locations having some distance from the in-
terface. Therefore, this method may give rise to difficulties in maintaining
accuracy at the interface and is also relatively much less straightforward in
its implementation and extension to multidimension problems with complex
interfaces.

The motivation of this paper is to overcome the difficulties faced by the orig-
inal GFM or even the modified GFM when large differences of states and
material properties occur at the interface via construct a new GFM based on
the interface interaction. All the while, it is imperative that the method still
keeps to the simplicity of the original GFM. Based on the present method, we
also propose an improved treatment of the re-initialization step in the level
set function calculation for general interface so as to increase the accuracy of
the interface location update.
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2 Preliminaries

2.1 Euler equations

Assuming the fluid is inviscid and compressible, the flow can be described by
Euler equations in two dimensions


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ρ
ρu
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E


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t

+


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ρuv
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
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+


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ρv
ρuv

ρv2 + p
(E + p)v




y

= 0, (1)

This set of equations describes the conservation of density ρ, momentum ρv ≡
(ρu, ρv) and total energy density E = ρe+ 1

2
ρu2, where e is the internal energy

per unit mass. The one-dimensional Euler equations are obtained by setting
v = 0.

To close this set of equations, the equation of states (EOS) must be defined
to give the relation between pressure, density and internal energy. There are
several forms of EOS for different materials, but all can be written generally
as p = p(ρ, e). If the entropy is kept constant, an isentropic EOS results and
can be written as p = p(ρ, s0). Here, the pressure is determined by density
directly.

2.2 Level set equation

Consider a moving interface Γ(t) separating the domain Ω(t). We associate
Ω(t) with a signed distance function φ(x, y, t), that is ∇|φ| = 1, called the
level set function (Osher and Sethain, 1988). Knowing φ we may locate the
interface by finding the zero level set of φ. That is Γ(t) = {x, y : φ(x, y, t) = 0}.
So the movement of the interface is equivalent to the updating of φ. We can
use the level set equation

φt + uφx + vφy = 0 (2)

to update all the level sets, where u and v are the velocity components for the
level sets in x and y directions.

For compressible multi-material flows, the interface velocity is usually not
known, hence the movement of the zero level set at interface is approximated
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by updating level sets on the nearest grid points. As the speed near the in-
terface may change very rapidly or become a discontinuity as the interface
moves, the solution of Eq. 2 often becomes very flat and/or steep at the inter-
face. Therefore, φ needs to be re-initialized to be kept as the signed distance.
The re-initialization equation can be written as

φτ + sgn(φ) (|∇φ| − 1) = 0, (3)

where sgn(φ) is a sign function and is usually approximated by a smooth
function (Peng et al, 1999). For a given φ, this equation can be solved to
steady state. As re-initialization is needed for the whole domain, the fast
marching method (Sethain, 1999) can also be used to increase efficiency, in
which case the eikonal equation |∇φ| = 1 is solved directly. For the flows
with strong shock waves, φ may need to be re-initialized at every time step.
However, re-initialization at every time step can lead to the movement of the
zero level set and must be performed extremely carefully; otherwise serious
difficulties will result, such as large mass loss.

In the computation of compressible multifluids, smooth or constant extension
of a quantity q is sometimes needed. For example, in the GFM, flow variables
are needed to be extended into the ghost cells. We use the extending equation

qτ ±N · ∇q = 0 (4)

to extend quantities to their neighborhood. Here ±N is the positive and nega-
tive normal direction of the level set and used to decide the extending direction
(Peng et al, 1999). +N is used to extend quantities from regions φ < 0 to re-
gions φ > 0, while −N is used to extend quantities from regions φ > 0 to
regions φ < 0. Again, for a given q, the extending equation can be solved to
steady solution.

2.3 Ghost cells

As the interface serves to separate two distinct media, the two associated flow
fields are to be solved separately. In a finite difference implementation, special
care is needed when the grid points of the difference stencil is cut by the
interface. As such, the states on the other side of the interface can not be used
directly which can and usually leads to serious oscillations. These ”missing”
points can be filled by the so called ghost cells (collocated with the real cells
but separated by the interface). Therefore, both the two fluids have their own
real cells and ghost cells. The presence of ghost cells allows the two fluids to
be calculated separately as a single fluid and makes the interface ”invisible”
during the computation.
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The ghost cell can be considered to be first introduced to the front tracking
method by Glimm et al (1981), in which the states of the ghost cells are
extrapolated from nearby point from the same side. For the GFM based on
level set tracking (Fedkiw et al, 1999b), a narrow band of ghost cells is defined
in the vicinity of the interface. At the ghost cells, the ghost fluid is defined
with the same pressure and normal velocity of the real fluid and the ghost
cell density is obtained from isobaric fixing technique. For the SFM, the ghost
cells are defined by directly copying the pressure, normal velocity and density
from the real cells. In the modified GFM (Fedkiw 2002) for the air-water
interaction, the normal interface velocity is obtained from the water side and
the pressure at the interface is obtained from the air side.

3 The interface interaction method

In our method, the ghost cell states are defined according to the interface
interactions. We firstly determine the interface condition. That is, the inter-
face velocity, pressure and densities are obtained by solving the real interface
interaction of the two fluids. Then two hypothetic interactions called ghost in-
teractions are defined between each ghost fluid to its corresponding real fluid.
In each ghost interaction, the real fluid reaches the same interface condition
as that of the real interaction. As higher order extrapolation may be used to
calculate more accurate states near the interface, the interface condition can
also be obtained with higher order accuracy by involving more nodes. Hence,
the ghost cell states are also correspondingly evaluated. Therefore, the present
method can lead or be extended to a possible higher order for multifluids prob-
lems. However, for simplicity, the discussion in this paper is based on the first
order extrapolation only.

Usually, there are many ways, based on different assumptions, to solve the
interface interaction, such as the exact Riemann solver and approximate Rie-
mann solver. In this paper, both the real and ghost interactions at the interface
are solved by the method of characteristics (Rudinger, 1969). For this method,
we propose two assumptions: a) the interactions take place on the two fluid
nodes nearest to the interface, b)the interactions are isentropic processes in
which there is no entropy change for the two respective fluids or any entropy
exchange between them throughout the interaction. The first assumption is
to ensure that the interaction process is totally controlled by the two fluid
states nearest the interface and any other flux into the interaction region is
neglected. For the second assumption, no heat transfer and mass diffusion is
allowed.
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3.1 Interface condition

Assume that the adjacent grid cells have two different fluids and their states
are Wj = Wl = (ρl, ul, pl) and Wj+1 = Wr = (ρr, ur, pr), as shown in Fig. 1 .
The isentropic EOS for the two fluids are p = pl(ρ, sl) and p = pr(ρ, sr), where
sl and sr are the respective constant entropies on the left and right sides
of the interface. According to the first assumption, only the two half fluid
cells nearest to the interface are involved in the interaction, and the interface
position remains changed (see Fig. 1). After the interaction, the interface takes
on the interface velocity uI and pressure pI . The densities of the two fluids
near the interface have also changed to ρI,l and ρI,r, respectively.

With the method of characteristics, we have the relations

uI = ul −
pI∫

pl

dp

ρl,scl,s

, (5)

uI = ur +

pI∫

pr

dp

ρr,scr,s

, (6)

pI = pl(ρI,l, sl), (7)

pI = pr(ρI,rsr), (8)

where ρl,s, cl,s and ρr,s, cr,s are the densities and sound speeds determined
by the isentropic EOS. The unknown variables uI , pI , ρI,l and ρI,r can be
obtained by solving equations Eq. 5 to Eq. 8. In Appendix A.1, the detailed
method for the gas-gas and gas-water interface conditions are described. On
the other hand, as the interface velocity has been computed at the interface,
the zero level set is then moving at the exact interface velocity. Therefore, we
update the zero level set function with solved interface velocity.

3.2 Defining the ghost cells

Suppose the real cell state Wl = (ρl, ul, pl) in the left cell j interacts with the
ghost cell state Wgl = (ρgl, ugl, pgl) in the right cell j + 1, as shown in Fig. 2.
Both the real and ghost cells are treated with the same EOS as for the left
medium. The same assumptions are also applicable to the ghost interaction
at the cell wall j + 1/2 which takes on the functional role as the interface.
After the ghost interaction, the interface assumes the velocity ug and pressure
pg. The densities of the two sides near the cell wall are also changed to ρg,l
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and ρg,gl, respectively. We set the interface velocity, pressure and density on
the real fluid side to be equal to those after the real interaction, i.e. ug = uI ,
pg = pI , and ρg,l = ρI,l; this implies that both the ghost and real interaction
give the same interface condition for the real fluid. Therefore, the ghost cell
states can be obtained by solving

uI = ugl +

pI∫

pgl

dp

ρgl,scgl,s

, (9)

pgl = fs(ρgl, sgl), (10)

with the given interface condition of uI and pI . Here ρgl,s and cgl,s are the
density and sound speed determined by the isentropic EOS on the left medium,
and sgl is the ghost cell entropy throughout the interaction. However, one
would note that there is no unique solution for the ghost interaction problem.
While Eq. 9 and Eq.10 are satisfied, the ghost cell states may be different
by choosing various combinations of two variables from density, pressure or
velocity. Here, we shall consider two simplest cases:

• Algorithm A
We define the ghost cell pressure as that at the interface after the real

interaction, i.e.

pgl = pI . (11)

Hence the integral in Eq. 9 becomes zero and the ghost cell velocity is

ugl = uI . (12)

Furthermore, one can find that any ghost cell density can satisfy Eq. 9.
We define the ghost cell density by isentropic extrapolating, i.e. sgl = sl.
Therefore, the ghost cell density on the right side can be computed directly
by pgl = fs(ρgl, sl). See Appendix A.2 for details on gas-gas and gas-water
interactions.

• Algorithm B
We define the ghost cell pressure and density by constant extending, i.e.

pgl = pl, (13)

ρgl = ρl. (14)

Hence, from Eq. 5 and Eq. 9, we obtain the ghost cell velocity as

ugl = 2uI − ul. (15)
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As the real and ghost fluids have the same pressure after the ghost interaction
(see Fig. 2), via isentropic condition, we have

ρI,l = ρg,gl (16)

for both Algorithm A and B. One can find further that the above two cases
are equivalent for the ghost interactions because both the real and ghost fluid
give rise to the same interface conditions of velocity, pressure and densities.
It may be noted that the ghost cell states in Algorithm B has the same form
of the boundary conditions for a moving piston (Hirsch, 1990; Fedkiw et al,
1999a). Therefore, one may interpret that the physical meaning or outcome of
the two algorithm as if the interface is treated as a piston and the velocity of
the moving piston is determined by the interface interaction. As the method
of characteristics is an approximate Riemann solver, the ghost cell states as
enunciated by the Algorithm B may face numerical difficulties associated di-
rectly with the accuracy of the calculated interface velocity uI ; for example,
when there is a strong rarefaction wave giving rise to the so called ”1-2-3”
problems (Toro, 1997). In our implementation, we only use Algorithm A to
determine the ghost cell states as it is, in practice, numerically more stable.

Similarly, for the real cell state Wr = (ρr, ur, pr) in cell j + 1, the ghost cell
state Wgr = (ρgr, ugr, pgr) in cell j can also be defined by a ghost interaction
with the EOS on the right. It is also noted that, to avoid ”over heating”
errors, an isobaric fix (Fedkiw et al 1999a) can be introduced from j − 1 to j
and j + 2 to j + 1 before solving the interface interaction problem. For nodes
to the left of j or the right of j + 1, the ghost states are simply extended
or isentropic extrapolated from Wgl and Wgr, respectively. Choosing either
presents no significant difference for the final results.

In the present method, as the ghost cell density is different from the real
density, there is strictly no conservation kept at each time step. However, we
expect the conservation error can be reduced or mitigated because the con-
servation properties is also controlled by a moving piston boundary condition.
This will be discussed further in Section 6.4 based on specific numerical ex-
amples.

4 Implementation in multidimension

For one dimension, the above interface interaction method is simple and eas-
ily implemented. For higher dimensions, as more velocities components are
involved, we only need to consider the interface interaction in the normal di-
rection to the interface and hence the normal velocity component is required.
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In the procedure below, with respect to the direction normal to the interface
(or interaction), we shall define the cells with φ < 0 as on the left and the
cells with φ > 0 as on the right.

1 Extend p, ρ, u, v along the normal direction to the ghost cells in a narrow
band near the interface for the two fluids using Eq. 4.

2 Calculate the normal velocities of the all the cells in the narrow band.
3 Solve the interface conditions for the real interaction along the normal di-

rection via Eq. 5 to Eq. 8.
4 Compute the ghost cell state values by solving the ghost interaction given

in Eq. 10 to Eq. 12.
5 Update the ghost cell velocity components by replacing the normal velocity

components obtained from the ghost interaction.
6 Update the real cell values of the two fluids separately using the respective

one-phase solvers.

5 Modification of re-initialization

In order to minimize or avoid the re-initialization errors as reflected on the in-
terface location, the re-initialization of the level set function is to be modified.
As the interface velocity has been computed at the interface, the zero level set
is then moving at the exact interface velocity. Therefore, the values of level set
near to the interface do not need to be re-initialized. However, as the defini-
tion of the narrow band is based on the level set value, the re-initialization is
needed for the level set values away from narrow band to maintain as a signed
distance to the interface. The re-initialization procedure with the main solver
is given as follows:

1 Calculate the interface conditions for all cells in the narrow band and set
the calculated interface velocity for level set updating.

2 Set the ghost cell values, and update the whole flow fields.
3 Update the level set via Eq. 2.
4 Re-initialize the level set via Eq. 3 for cells with φ > dl; here dl =

√
∆x2 + ∆y2.

The TVD-Runge-Kutta method (Shu and Osher, 1988) may be used for time
integration where a full time-step is made up of several sub-time-steps. While
the interface condition and the ghost cell values may be computed at every
sub-time-step, the the level set updating and re-initialization are computed
once in the full time-step.

It is to be noted that Fedkiw et al (1999c) presented a similar method which
defines the level set velocity as the velocity of detonation and deflagration
waves. However, our treatment here is for a general interface evolution and
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the interface velocity extending is also not needed. On the other hand, as the
calculated interface velocities in the narrow band are very close, the τ -steps
(τ = ∆x

2
) for Eq. 3 can be reduced comparing to that of the GFM (Fedkiw

et al, 1999b). Usually, one can only requires about 5 τ -steps to give a good
signed distance function.

6 Numerical examples

The following numerical examples are provided to illustrate the ability of the
interface interaction method to handle fluids with large difference of states and
material properties at the interface. We denote the original ghost fluid method
as GFM, the single fluid method as SFM, the modified ghost fluid method
as M-GFM and the present interface interaction method as I-GFM. For all
the test cases, the one-phase calculations are carried with 5th order WENO-
LF(Jiang and Shu, 1996) and 3rd order TVD Runge-Kutta (Shu and Osher,
1988). Before the three sub-time-steps of TVD-Runge-Kutta, the interface
condition is solved once. In the one dimensional examples, the number of grid
points is 200 and the referenced exact solution is sampled on 200 grid points
too.

6.1 Shock tube problems (I)

In this section, we compute for a series of shock tube problems. The first case
is one with moderate numerical stiffness. Then the stiffness of the problems
are gradually increased by increasing the difference of initial density, pressure
or heat ratio at the interface. In all the computations, the initial velocity at
the interface is taken as null value.

6.1.1 Case I-A

We consider a air-helium shock tube problem with the following initial data:

(ρ, u, p, γ) =
{

(1, 0, 1, 1.4) if x < 0.5
(0.125, 0, 0.1, 1.667) if x > 0.5

. (17)

The typical results at time t = 0.15 computed with the I-GFM, GFM, SFM
and M-GFM are shown in Fig. 3 , Fig 4 ,Fig. 5 , and Fig. 6 , respectively.

One can observe that the results by I-GFM, GFM and SFM are in good
agreement with the exact solution; in particular they have almost identical
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and correct shock strength and speed. The interface position is also captured
accurately. Both the GFM and I-GFM give a sharp density discontinuity at
the interface. However, as the ghost cell density is copied directly from the
real fluid, the SFM predicts a perceptibly smeared out density profile while
the heat ratio γ discontinuity indicates the interface position.

For the results of M-GFM, one can find the shock front and interface locations
are both wrongly predicted and there are large errors pertaining to the rarefac-
tion wave. In the calculation, the interface pressure is chosen from the right
and the velocity from the left. If the interface pressure is chosen from the left
and the velocity from the right, the results are even worse (not shown here).
This example highlights the problems/difficulties faced by M-GFM when the
difference in the sound impedance of two fluids is not large as that encounter
and originally developed for the gas-water interface by Fedkiw (2002). Further
numerical tests also depict large deviations from the exact solution or even
unreasonable results obtained by the M-GFM for gas-gas problems (not shown
here). For this reason, for the subsequent examples of gas-gas interaction, only
the results by I-GFM, GFM and SFM are discussed.

6.1.2 Case I-B

We compute a more stiff shock tube problem where the initial pressure differ-
ence is much larger and which is taken from from Abgrall and Karni (2001).
The initial data is

(ρ, u, p, γ) =
{

(1, 0, 500, 1.4) if x < 0.5
(1, 0, 0.2, 1.667) if x > 0.5

. (18)

The results at time t = 0.015 using the I-GFM are shown in Fig. 7 and are in
good agreement with the exact solution.

The results obtained with the GFM and SFM are shown in Fig. 8 and Fig. 9 ,
respectively. For the GFM, even though the general shock strength and speed
and the interface position are calculated correctly, there are some discrepan-
cies found near the interface. There is more numerical viscosity produced for
the SFM, which leads to greater smearing at the shock front; it requires a
much finer distribution of about 800 grid points to ensure sharper shock front
comparable to that of the I-GFM or GFM (Abgrall and Karni, 2001).

For both the GFM and SFM, one can also observe the overshoots at the end
of the rarefaction waves on the velocity profiles. Abgrall and Karni (2001)
suggested that these are due to the difficulties associated with the one-phase
solver and not the multifluid modeling. It may be mentioned that, with the
I-GFM, the overshoot is replaced by a very mild undershoot even though all
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the three methods use the same WENO scheme for the one-phase solver (see
the velocity plot in Fig. 7).

6.1.3 Case I-C

For this case, we greatly increase the ratio of initial density by up to an order
of magnitude, that is

(ρ, u, p, γ) =
{

(1, 0, 500, 1.4) if x < 0.8
(10, 0, 0.2, 1.667) if x > 0.8

. (19)

There is a greater stiffness in the problem due to the larger difference of
densities near the interface. We run this case to a final time of 0.025. The
results using the I-GFM are shown in Fig 10 . One can find that the results are
in reasonably good agreement with the exact solution; the strength and speed
of the shock and rarefaction waves and the interface position are calculated
accurately.

The results obtained with the GFM are shown in Fig. 11 . Although the
calculated interface speed is correct, there are large discrepancies for both the
shock and rarefaction waves. Even as the isobaric fix is implemented, a strong
”over heat” problem still occurs near the interface. A non-physical wave near
the end of rarefaction wave is also produced showing a hump moving from
the right to the left. For the SFM, the results shows that both the shock
and interface speed are in agreement with the exact solution(see Fig. 12 ).
However, the large numerical viscosity cause much smearing to the shock front.
In addition, the discrepancy at the end of the rarefaction wave increases to an
almost unacceptable level which produces a large hump in the velocity profile.

6.1.4 Case I-D

In this case, we change the magnitude of density and γ on the right side, such
that

(ρ, u, p, γ) =
{

(1, 0, 500, 1.4) if x < 0.75
(30, 0, 0.2, 2.0) if x > 0.75

. (20)

As both the initial difference of density and heat ratio at the interface becomes
ever larger, this problem is very stiff. Figure 13 shows the typical results by
the I-GFM at time t = 0.02 depicting still reasonable agreement with the
exact solution.

The results obtained with the GFM are shown in Fig. 14 . One can easily ob-
serve that the results are almost unreasonable. The speed and strength of the
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shock and rarefaction waves as well as the interface position bear much differ-
ences from the exact solution. For SFM, the program faces much difficulties
and fails to produce meaningful results even at the early stage of computation.

6.2 Shock interface interaction problems (II)

In this section, problems on shock interface interaction are computed. In all
the cases considered, a shock wave on the left propagates towards another
material medium on the right. As the shock wave makes impact on the inter-
face, the transmitted waves is always a shock wave. For the reflection wave, a
shock or rarefaction wave may materialize depending on the shock impedance
difference at the interface. Here, the first case gives rise to rarefaction wave at
the interface, and the subsequent two cases leads to the formation of reflected
shock wave.

6.2.1 Presence of reflected rarefaction wave: Case II-A

We consider a strong shock wave with a pressure ratio of 1000 propagating
from a high density gas to a low density gas. The initial data is similar to that
from Liu et al (2002) except that the present density ratio is even higher:

(ρ, u, p, γ) =
{

(3.984, 27.355, 1000, 1.667) if x < 0.5
(0.01, 0, 1, 1.4) if x > 0.5

. (21)

The exact solution of this problem includes a rarefaction wave reflecting into
the high density gas and a shock wave is transmitted into the low density gas.
The typical results shown at t = 0.001 using I-GFM are plotted in Fig. 15 .
The comparison with exact solution shows good agreement.

The results using the GFM and SFM are shown in Fig. 16 and Fig. 17 , re-
spectively. For both method, there is fairly large discrepancy of the calculated
interface position and shock wave speed when compared to the exact solution.
It is also apparent that the GFM depicts large undershoot or overshoot to-
wards the reflected rarefaction wave end (see the pressure and velocity plots
in Fig. 16 ).

6.2.2 Presence of reflected shock wave: Case II-B

We consider a strong shock wave with a pressure ratio of 100 propagating from
a helium-like gas to an air-like gas. The initial conditions are very similar to
that taken from Liu et al (2002) except that the density ratio is more severe
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with much larger quantity pertaining to the air-like gas. The initial data is

(ρ, u, p, γ) =
{

(0.384, 27.077, 100, 1.667) if x < 0.6
(10, 0, 1, 1.4) if x > 0.6

. (22)

As the shock impedance on the right medium increases with density, it gives
rise to a much stronger transmitted and reflected shock waves as the initial
shock wave makes impact on the interface. The results obtained at time t =
0.04 using the I-GFM are shown in Fig. 18 . The results compare well with
the exact solution.

The results computed using GFM and SFM are shown in Fig. 19 and Fig.
20, respectively. The GFM predicts an incorrect transmitted shock speed and
interface speed. For the SFM, besides the calculated interface and shock front
which exhibiting large degree of smearing, both the computed reflected and
transmitted shock waves speed also indicate large discrepancies with the exact
solution.

6.2.3 Presence of reflected shock wave: Case II-C

The initial density ratio at the interface is increased by another order of mag-
nitude together with an increase of the heat ratio . The initial condition is
given as

(ρ, u, p, γ) =
{

(0.384, 27.077, 100, 1.667) if x < 0.6
(100, 0, 1, 3.0) if x > 0.6

. (23)

In this case, as the right side material is of much higher density and low
compressiblity, the impact of shock on the interface produces a transmitted
and reflected shock waves which are more intense than the former Case II-B.
Figure 21 shows the results using the I-GFM at time t = 0.04. The results
still compare very well with the exact solution.

On the other hand, the computation via the GFM faces severe difficulties. It
overflows after several time steps and no meaningful result is produced. For
the SFM, it can compute for this problem but with much smeared interface
and transmitted shock wave front (see Fig. 22 ).

6.3 Shock interaction with water (III)

In this section, two problems of shock interaction with water are computed.
In both cases, Tait’s EOS is used for the water medium. The state values
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are non-dimensionlized with respect to the property of water at 1 atmosphere
and length scale 1m. Since the GFM and SFM face severe difficulties in these
problems, only the M-GFM and I-GFM are used to calculate these cases.

6.3.1 Underwater explosion: Case III-A

This problem is taken from Tang and Huang (1996). The initial conditions are
given as

(ρ, u, p, γ) =
{

(0.01, 0, 1000, 2) if x < 0.5
(1, 0, 1, 7.15) if x > 0.5

. (24)

In an underwater explosion, the high pressure explosive products bubble ex-
pands very rapidly in water. It generates a shock wave into the water and a
rarefaction wave is reflected back into the explosive bubble.

Figures 23 and 24 show the computed results using I-GFM and M-GFM at
time t = 0.0008 , respectively. One can find that both methods give essentially
the correct shock wave strength and speed in water. The I-GFM, however,
presents a more accurate solution for the rarefaction wave than that of the M-
GFM; the later depicts a smeared out rarefaction wave which can be attributed
to the larger numerical viscosity involved.

6.3.2 Underwater explosion: Case III-B

We increase the energy of the explosives such that the initial pressure ratio is
increased by at least one order of magnitude. The initial conditions are

(ρ, u, p, γ) =
{

(0.5, 100, 20000, 2.5) if x < 0.5
(1, 0, 1, 7.15) if x > 0.5

. (25)

In this case, due to the expansion of the initially very high pressure explosive
products, two shock waves are generated; one propagates into the water and
the other is reflected back into the explosive products.

The obtained results at time t = 0.001 using the I-GFM and M-GFM are
shown in Fig. 25 and Fig. 26 , respectively. For the I-GFM, the strength and
speed of the two shock waves are correctly predicted. By comparing to the
exact solution, one can find while the M-GFM computes a reasonable strength
and speed of the transmitted shock wave, this is not so for the reflected shock
wave in the explosive products. A non-physical shock wave back is observed
in the explosive products (see Fig. 26 ).
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6.4 Conservation and convergence test

In this section, we perform the conservation and convergence tests for the
I-GFM. Based on the particular Case I-A, we compute and compare the con-
servation errors incurred by the I-GFM, GFM, SFM and M-GFM. Then the
convergence property of the I-GFM on mesh refinement is calculated and dis-
cussed for the other typical Case I-A to Case I-D.

For the above-mentioned Case I-A to Case I-D, the relative mass and en-
ergy variations for the separated left medium and right medium during the
computation can be simply calculated by

V =
(
∑j=Kn

j=0 Un
j + fnUn

I )∆x

(
∑j=K0

j=0 U0
j + f oU0

I )∆x
, (26)

where Uj is the mass density or energy density on cell j, UI is the corre-
sponding quantity at the interface, the superscript o and n are for the initial
condition and the nth-time-step values, respectively, K is the number of cells
fully occupied by the left or right medium and f is its volume fraction at
the interface, which is based on the the zero level set position by linear in-
terpolation. In a similar way, the total mass and energy variations are given
as

Vtotal =

[
(
∑j=Kn

j=0 Un
j + fnUn

I )left + (
∑j=Kn

j=0 Un
j + fnUn

I )right

]
∆x

[
(
∑j=Ko

j=0 U o
j + f oU o

I )left + (
∑j=Ko

j=0 U o
j + f oU o

I )right

]
∆x

. (27)

Figure 27 presents the relative conservation variation of the left medium mass,
the right medium mass, the total mass and the total energy for Case I-A. For
the I-GFM, it gives about the smallest errors or deviation form unity and
takes the shortest time to obtain a stable value for the two media. For the
GFM, it depicts a relatively larger conservation errors than the I-GFM (for
all the four quantities considered) and takes a longer time to reach the stable
value. For the SFM, which is supposed to possess the conservation property
for the total mass, the total mass calculated indicates a value even closer to
unity although there are some fluctuations observed. On the other hand, one
may note that there are larger errors involved for the individual medium as
compared to I-GFM and GFM. This seemingly contradictory situation may
indicate that there is considerable mass transport across the interface and the
contact discontinuity is also smeared. For the M-GFM, it shows the largest
conservation errors. Needless to say, this is also reflected in the solution which
deviates most from the exact solutions among all the methods considered (see
Fig. 6).
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The relative conservation errors of mass (taken w.r.t. to the initial quantity at
t = 0) as a function of the number grid points for I-GFM are calculated. The
results are summarized in Tab. 1 to Tab 4. In all the cases, we can observe
that the errors are reasonably small and converge about linearly with O(∆x)
with mesh refinement. We can further note that the said convergence rate is
fairly independent of the problem ranging from the moderately stiff Case I-A
to the extremely stiff Case I-D. Comparing to the convergence rate of SFM
in Abgrall and Karni (2001), one can deduce that the I-GFM have a much
higher rate of convergence.

It is to be noted that Nguyen et al (2002) presented a fully conservation GFM
by a redistribution approach, which is simpler than the full space-time differ-
encing method by Glimm et al (2001). While some results are promising, it
remains unclear whether the post-processing step to correct for the conserva-
tion errors during the GFM procedure is effective when there is already a large
conservation error incurred or worse still when the computations break down
in the GFM step. For the I-GFM, as it still predicts a reasonably accurate so-
lution with smaller conservation errors, it seems that a similar post-processing
procedure can be effectively incorporated and be developed to be a fully con-
servative I-GFM as well.

6.5 Collapse of 2-D air cavity collapse in water

To demonstrate the implementation of the I-GFM in 2-D and verify the as-
sembled code, we perform a numerical simulation of an experiment carried
out previously by Bourne and Field (1992): a 6mm cylinder air cavity in gela-
tine/water is impacted by a 1.9GPa shock. The experimental results shows
that a very high speed jet is formed which then hit the downstream cavity
wall. A very high pressure and temperature are also produced at the impact
point of the high speed jet. Bourne and Field also observed luminescence in
the interaction process. There have been a number of simulations on cylinder
cavity collapse under shock (Grove and Menikoff, 1990; Ding and Gracewski,
1995; Ball et al, 2000). According to Bourne and Field’s experiments, the
schematic of the problem is given in Fig. 28a . All the boundaries are outflow
boundaries with zero gradient. The non-dimensionlized (based on the property
of water at 1 atmosphere and length scale 1mm.) initial data is





(ρ = 1, u = 0, v = 0, p = 1, γ = 7.15) pre-shocked water
(ρ = 1.31, u = 67.32, v = 0, p = 19000, γ = 7.15) post-shocked water
(ρ = 1.2, u = 0, v = 0, p = 1, γ = 1.4) air bubble
φ = −3 +

√
x2 + y2 level set

.(28)
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Here φ ≤ 0 represents the air and φ > 0 represents the water. Figure 28a shows
a air cavity of radius 3 at (0,0) is to be impacted by a shock wave initiated
at x = 2.4. A 400x400 nodes grid is uniformly distributed in the respective x
and y directions and the same 5th order WENO-LF is also used as the one-
phase solver. Figures 28b, 28c and 28d show the typical density contours at
t = 0.02(2.0µs), t = 0.031(3.1µs) and t = 0.037(3.7µs) after the shock wave
impinges on the air cavity. The results are in good agreement with Bourne and
Field’s (1992) observation (their Fig. 5). In Fig. 28b, the reflected incident
wave shows an anomalous reflection pattern. One can also see such similar
features as obtained by Grove and Menikoff (1990) though for different initial
condition. As the cavity collapses the high speed jet is also formed. Figure
28c shows the instance just before the jet making impact on the downstream
cavity wall. This result is also in reasonable agreement with the calculations
of Ball et al (2000) using a completely different numerical scheme called the
free Lagrange method. However, the present calculated highest jet velocity
just before the impact is about 2800m/s which is some 200m/s larger than
that reported by Ball et al. As the jet impacts on the down stream cavity wall,
Ball et al mentioned that a part of the cavity mass is trapped between the jet
nose and cavity wall. However, this is not specifically observed or discussed
in the experiments and our numerical results indicate likewise. Our results
further show that, after the jet impact, while the resultant strong shock wave
interacts with the generated lobes, two secondary jets are also produced (see
Fig. 28d); the jets subsequently bisect the lobes again to form 4 separated
cavities (not shown here). Finally, when these cavities reaches its smallest
volume at about time t = 4.3µs, the calculated temperature in the collapsed
cavities is higher than 10000K which may be the reason for the presence of
luminescence observed in the experiments.

6.6 Air-helium shock interaction

In this 2-D problem, we compute for a Mach 1.22 air shock wave interaction
with a cylindrical helium bubble. Hass and Sturtevat’s (1987) experimental
results showed that, under the air shock pressure, the helium bubble collapses
and a jet is produced. Numerical computations for the same problem can be
found in Quirk et al (1996), Lian and Xu (1999) and Bagabir and Drikakis
(2001). This problem has also been computed by the GFM ( Fedkiw et al,
1999b). Figure 29a shows the schematic of the problem, where the upper and
the lower boundaries are reflection boundaries of a solid wall. The left and
the right boundary condition are outflow boundaries with zero gradient. The
nondimensionlzed (based on the property of air at 1 atm and length scale of
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1mm) initial conditions are





(ρ = 1, u = 0, v = 0, p = 1, γ = 1.4) pre-shocked air
(ρ = 1.3764, u = 0.394, v = 0, p = 1.5698, γ = 1.4) post-shocked air
(ρ = 0.138, u = 0, v = 0, p = 1, γ = 1.667) helium bubble

φ = −25 +
√

(x− 150)2 + y2 level set

,(29)

where φ ≤ 0 represents the helium and φ > 0 represents the air, depicting
a helium bubble of radius 25 at (0,150) which is to be impacted by a shock
wave initiated at x = 100. The computation has been carried out with four
increasing resolutions of ∆x = ∆y = 2, 1, 0.5, 0.25; this is also to ensure grid
invariance as similarly done in Fedikew et al (1999).

Figure 29b shows the density contour corresponding to t = 1.238(427µs) after
the air shock makes impact on the helium bubble (∆x = ∆y = 0.25). The
calculated bubble shape and jet shape are in good agreement with Quirk et
al’s AMR computed results (their Fig. 9h) and Hass and Sturtevat’s (1987)
experiment (their Fig. 7h). Comparing to the results of the original GFM
(Fig. 30 in Fedkiw et al, 1999b), one can deduce that the I-GFM calculates
more accurately the interface details including the jet size and the shape of jet
head. This is perhaps to be expected since the interface velocity is accurately
calculated and is incorporated directly into the level set evolution. Instabilities
are also found at the interface, but, just as in the experiments, they are not
as strong as the results of Lian and Xu (1999) (their Fig. 4.2) obtained with a
front capturing method. Figure 30 gives the several level sets near the interface
at the same time as in Fig. 29b . It is found that while the accuracy of the zero
level set location is kept, the initial property of signed distance is preserved
by the equal spacing of the neighboring level sets. Finally, Fig. 31 shows the
relative variation of the total helium mass during the computation for the
four different resolutions. On can find that the mass conservation error is very
small and manageable. This is especially so for the smallest grid size of 0.25.
From Fig. 3 , the calculated time-averaged relative percentage errors in helium
mass by (taken w.r.t. the initial quantity at t = 0) our I-GFM are significantly
lower than that of the GFM; these values are 0.53%, 0.37%, 0.28%, and 0.12%
corresponding to the resolutions ∆x = ∆y = 2, 1, 0.5, 0.25, respectively (which
can be compared to 2.5%, 0.78%, 0.42% and 0.43%, respectively, found in
Fedkiw et al, 1999b). These results further indicates that the I-GFM has good
conservation properties.

19



7 Concluding remarks

In this paper, we developed an interface interaction method based on solv-
ing the real and ghost interface interactions. As the method is constructed
and modified with respect to the GFM and level set technique, it is simple
for implementation and extension to higher dimensions. In the said method,
the interface velocity is accurately calculated and the conservation proper-
ties are enhanced by the moving piston boundary condition. A number of
numerical examples in one dimension are studied with comparisons to exact
solution while two dimensional problems are calculated and compared to ex-
periments and previous methods. The results show that the present method
can overcomes various difficulties encountered by the original GFM, SFM and
the modified GFM. In addition, the interface location is also calculated more
accurately by the modification of re-initialization in the level set updating.

The interface interaction method is performed only in a narrow band of the
mesh and hence is very efficient. The computational cost is almost like the
original GFM in most cases. Finally, as the states for solving the interface
conditions can be approximated by high order extrapolation, our method may
suggest a way for higher accurate schemes for multifluids flows.
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A Interface interaction method for gas-gas and gas-water interac-
tion

A.1 Interface condition

An ideal gas has the EOS of the form

p = (γ − 1)ρe, (A.1)

where γ is the heat ratio. The Tait’s EOS for water is

p = B

(
ρ

ρo

)γ

−B + A, (A.2)

where γ = 7.15, B = 3.31 × 108Pa and A = 1 × 105Pa. The isentropic form
of ideal gas EOS and the water EOS both can also be written as

f(p)

ργ
= const, (A.3)

where f(p) = p is for an ideal gas and f(p) = p + B−A is for water. And the
equivalent form relating the pressure and sound speed c is

S =
2

γ − 1
ln c +

1

γ
ln f(p). (A.4)

Here S is a constant and c =
√

γf(p)/ρ. To solve the interface condition of
Eq. 5 to Eq. 8 can be rewritten as

uI = ul − 2cl

γl − 1




(
f(pI)

f(pl)

) γl−1

2γl − 1


 , (A.5)

uI = ur +
2cr

γr − 1




(
f(pI)

f(pr)

) γr−1
2γr

− 1


 . (A.6)

Equation A.5 and equation A.6 can be solved by Newton’s method easily.

For flows with limited change of density and sound speed across the interface,
the integrals in Eq. 5 and Eq. 6 can be linearized to

uI = ul − pI − pl

ρlcl

, (A.7)
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uI = ur +
pI − pl

ρrcr

. (A.8)

Then uI and pI can be calculated directly as

uI =
ρlclul + ρrcrur + pl − pr

ρlcl + ρrcr

. (A.9)

pI =
ρlclpr + ρrcrpl + ρlclρrcr(ul − ur)

ρlcl + ρrcr

, (A.10)

For air-water interaction with limited change of pressure and velocity across
the interface, the linearized form Eq. A.9 and Eq. A.10 degenerates to the
modified GFM for the relation ρwatercwater >> ρaircair.

A.2 Ghost cell values

The ghost cell pressure and velocity are directly copied from the interface
conditions. The ghost density ρgl is solved by relation Eq. A.3, that is

ρgl = ρl

(
f(pgl)

f(pl)

) 1
γ

. (A.11)
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Fig. A.1. Schematic for the interface interaction

j j+1 j+2j-1

j j+1 j+2j-1

before ghost interaction

after ghost interaction

ghost fluid 1

fluid 1

interface

Fig. A.2. Schematic for defining the ghost cells
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Fig. A.3. Shock tube problem: Case I-A
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Fig. A.4. Shock tube problem: Case I-B
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Fig. A.8. Shock interface interaction problem: Case II-B
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Fig. A.9. Shock interface interaction problem: Case II-C
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Fig. A.10. Shock interface interaction problem: Case II-D
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Fig. A.11. Problem on shock interaction with water: Case III-A
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Fig. A.12. Problem on shock interaction with water: Case III-B
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Fig. A.13. Relative conservation variation of mass and energy for Case I-A
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Fig. A.14. Collapse of air cavity in water: a. computational domain and initial
conditions, b. density contours at t = 2.0 × 10−2(2.0µs), c. density contours at
t = 3.1× 10−2(3.1µs), d. density contours at t = 3.7× 10−2(3.7µs)
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Fig. A.15. Air-helium interaction problem: a. a. computational domain and initial
conditions, b. Density contours at t = 1.238(427µs)

Fig. A.16. Level sets near the interface
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Fig. A.17. Normalized helium mass variation from t = 0 to about t = 1.6(550µs):
a) ∆x = ∆y = 2, b) ∆x = ∆y = 1, c) ∆x = ∆y = 0.5, d) ∆x = ∆y = 0.25
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