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Abstract. While the interface interaction method (I-GFM) [5] can handle multi-fluid and com-
plex moving boundary problems effectively, it approximates the interface at cell wall and losses
some accuracy associated with the sub-grid interface defined by the level set. In this paper, a
smoothed interface is obtained by including information of the sub-grid interface implicitly. Nu-
merical results suggest greater accuracy and less conservation error on the interface or boundary
are obtained with negligible increase in computational cost.

1 Introduction

Two main Eulerian numerical approaches, front tracking and front capturing, have been
developed for compressible flows with interface. The level set technique enables a com-
bination of these two approaches [9]. The ghost fluid method (GFM) [3] offers a fairly
simple way to implement in multi-dimension and enables multi-level time integration
other than dimensional time splitting. In our previous work [5], the interface interaction
method (I-GFM) was proposed to obtain the ghost fluid states according to the interface
interaction.

The I-GFM is able to handle multi-fluid problems with large difference of states and
material properties at interface while still keeping to the simplicity of the original GFM.
However, it approximates the interface at cell wall and losses accuracy associated with
the sub-grid interface defined by the level set function. This approximated interface is
not smooth either because the connected cell walls possess the shape of ”stair steps”. In
this paper, a smoothed interface is obtained by modifying the values on nodes nearest
to the interface according to the volume fractions of real and ghost fluids. The current
method is based on the standard level set technique and simple to implement.

2 Modification to the I-GFM scheme

In the I-GFM, a real fluid is only defined on the nodes (real nodes) with real states on
one side of the interface . On the other side of the interface, the corresponding ghost fluid
is defined on the nodes (ghost nodes) with ghost states inside the narrow band of the
interface. No fluid is defined on the rest of nodes (empty nodes) with any state (see Fig.1
where fluid 1 and fluid 2 are separated by the interface). Specifically, the ghost states
are obtained by the following procedures. First, the ghost nodes are filled with reference
states, including pressure, velocity and entropy (for isobaric fix [3]), which are extended
from the real states of the same fluid along the interface normal direction. Second, the
interface interaction is solved on the ghost node using the (initial) reference state and the
real state of the second fluid along the interface normal direction to obtain the interface
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state; then the (initial) reference state is replaced by the interface state and taken to be
the ’final” ghost state.

When the two fluids are solved with an one-phase solver separately, both the real
states and ghost states are utilized as cell-averaged values and taken to fully occupy the
associated cells. This is true for the nodes sufficiently far from the interface. However,
for the nodes nearest to the interface, since the cells are cut by the interface, the states
on such nodes are strictly no longer cell-averaged values (see Fig. 1). Therefore, for a
such ghost node there is a portion of real fluid in the cell and so forth for a such real
node. If the states on these nodes are approximated as cell-averaged values, it implies
that the equivalent approximated interface coincides with the cell walls. It is not accurate
because the sub-grid interface location as indicated by the level set function is lost. As
shown in Fig.1, the approximated interface is not smooth either because the connected
cell walls have shape like that of ”stair steps”. Since this interface can only shift its
location between nearby cell walls other than move smoothly, it may lead to a potential
difficult if the proposed interface moves slowly or oscillates with an amplitude smaller
than the grid size. In addition, as shown later, when the I-GFM is applied to complex
moving boundary problems, the boundary of such connected cell walls is equivalent to a
rough surface which may produce noisy or oscillating flow field [2].

In this paper, both the real fluid and ghost fluid are defined on the nodes nearest to
the interface according to their volume fractions, ¢,; and ¢y, cri+4n = 1, of the associated
cell. Therefore, reference state extension is no longer necessary for such ghost nodes, and
the interface interaction is solved directly with the real states of the two fluids. After the
interface state is obtained, the associated conservative variables are averaged based on
volume fractions, that is

Wgh(pa P, V) = Cerrl(p; 12 V) + cghWI(p;p)v)' (1)

This is equivalent to obtain a smooth interface by including information of the sub-grid
interface location implicitly. The above modification is implemented in a node-by-node
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Fig. 1. Schematic for fluids, nodes, states and interface
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fashion and only on the nearest nodes to the interface, hence, there is only negligible
increase in computation cost.

With the standard level set technique, the volume fractions for fluids 1 and 2 can be
approximated by

Ciz = Cih = H(¢,¢), C};h = C%z =1- H(¢,e) (2)

where H (¢, ¢) is the smoothed Heaviside function and ¢ is a small positive number, such
as the spatial step. A possible way to calculate H(¢,¢) is contouring based on the node
level set value. Consider a two-dimensional level set function, defined on a Cartisian grid
with Az = Ay = ¢, the schematic for contouring is shown in Fig 2. The level set on
a node O has a value of ¢ and a normal direction with angle « to the z direction. In
the associated cell ABC D, the zero level set can be approximated with the straight line
segment EF'. If the area s(¢) occupied by the real fluid is calculated, the volume fraction
is normalized to
5(¢)

Cr| = 8—2 = H(¢)6) (3)

As shown in in Fig. 2, two cases, i.e. ¢ > 0 and ¢ < 0, need to be considered. The relation
between the two cases is s = 2 — s7, in which s is s(¢) for ¢ > 0 and s~ is s(¢) for
¢ < 0. It is easy to find that s is the combination of a half cell and the area enclosed by
the polygon RBEF'S, which is the difference of the parallelogram RGF'S and ABGE.
As such, s is obtained as

Le2 4 D¢ it A <0
sT=2¢0 A>T (4)
12+ D¢ — 124 else

where D = LRS = smin( L L ), I = QLArR = \/D2—62 and A = LBG =

Jcosa|? [sinal

g + % — 5. Accordingly, it can be further shown that

0 itA>T, ¢<0
2

%+EL2D¢+§EA—F ifr>A>0, ¢$<0
H(p,e) ={ 3+ 5D¢ . ifA<0 . (5)
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Fig. 2. Schematic for level set contouring
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Since the I-GFM can be directly applied to complex moving boundary problems by
simply switch off the second fluid and update the level set with prescribed or inertia-
coupled velocity, the above mentioned modification can be applied fairly straightforward.
Note that, since the solid wall boundary condition is used, the reference state extension
may be replaced with the mirroring technique [1]. On comparing to [4], the present
method is simpler because no dimensional time splitting is necessary and the level set
technique is employed for the complex boundary description as well as boundary condi-
tion treatment.

3 Numerical examples

For all the test cases, the one-phase calculations are carried with the 5th order WENO-
LF [7] and 3rd order TVD Runge-Kutta [11]. Before each sub-time-step of TVD-Runge-
Kutta, the interface condition is solved once. In the one-dimensional examples, unless
otherwise stated, the number of grid points is 200 and the referenced exact solution is
sampled on 200 grid points too. All runs are carried out with the CFL of 0.6.

Multi-fluid Sod’s problem We consider an air-helium shock tube problem with the
following initial data:

(prupi) = (1,0,1,1.4) if £ <05 6)
pyu,p,Y) = (0.125,0,0.1,1.667) ifz >0.5"

This case is computed to time ¢ = 0.15. The relative mass variations for the left medium
and right medium during the computation can be calculated by

J=K" n n i)
_ Zj:o Pj + CrPT

Am"™ =
J=K° o o 0’
Yo PjT et

(7)

where p; is the cell-averaged density on node j, pr is the corresponding quantity of a
cell with cutting interface, the superscript o and n are for the initial condition and the
nth time step values, respectively, and K is the number of cells fully occupied by the
left or right medium. In a similar way, the total mass variations can also be obtained.
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Fig. 3. Mass variations for the multi-fluid sod problem
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Fig. 4. Underwater explosion problem

Figure 3 presents the relative conservation variations of the left medium mass, the right
medium mass and the total mass. On comparing to the results in I-GFM (Fig. 14 of [5]),
the current method produces only about 50% and 25% of mass conservation errors for
the two separated fluids respectively and about the same total mass conservation error.
Underwater explosion problem A real gas equation of state is used for the explosive
and Tait’s equation of state for the water medium. The initial conditions are given as

~ [(0.01,0,1000,2) if x < 0.5
(P, 7) = { (1,0,1,7.15) ifz>05" (8)

In this underwater explosion, the high pressure explosive products bubble expands very
slowly comparing to the transmitted or reflected wave front speed. Figures 4 shows the
computed results at time ¢ = 0.0008. Note the current results present a more accurate
solution for the rarefaction wave and the transmitted shock wave than that of the I-GFM;
the latter depicts a slight overshot at the rarefaction wave and small difference of velocity
at the water-explosive interface (see Fig. 12 in [5]).

Moving wall problem We consider a gas confined between two reflectiong walls at
r; = 0.5+ wt and z,, = 1.0 with constant u; = —0.5. The initial conditions are

[p(2),u(z),p(z)] = [1+0.2cos(2nz — ), 2u; (1 — z), p(z)" ] 9)

in which the entropy s(z) = 1. We calculate this case to time ¢ = 0.5. Since the analytic
solution is smooth, the entropy stays constant. The boundary and total entropy error is
calculated by

-
YiZo st =1+, lst =1 10
KO+ 0 ' (10)

rl,bry

errpry = |spry — 1], erryy =

Table 1. Errors in moving wall problem

1/h Am ETTtot eTThry

200 7.0 x 107 7.5 x 1077 4.6 x 107°?
400 3.5 x 1074 1.4x 1077 1.1 x 107°?
800 1.8 x 1074 2.5 x 1078 2.1 x 10~°
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Fig.5. Shock diffraction on airfoil: calculated pressure contours with I-GFM (left) and the
current method (right) on 360 x 400 grid, ¢t = 1.04

The results for erry,,, erry and Am in Table 1 show that the current moving boundary
treatment is second-order accurate and has first-order convergence rate for the mass
conservation error, which suggest the same order of accuracy and convergence rates as
the method in [4].

Shock diffraction on airfoil We consider Mach 1.5 shock diffraction past a NACA0018
airfoil with +30° angle of attack [8]. The level set is built from a polyline consisting
200 control points [6]. Figure 5 shows the computed results using I-GFM and the current
method at time ¢ = 1.04. It is found that the current method produces sharper diffraction
shock front and has no noise compared to the results with the I-GFM which is attributed
to the approximated non-smooth boundary. It is noted too, on comparing to the results
in [10] on a 500 x 500 grid with immersed boundary method, both the I-GFM and the
present method suggest higher order accuracy by which sharper shock wave front and
refined flow structures near the airfoil head and tip are produced.

References

1. R. Arienti, P. Hung, E. Morano, J. E. Shepherd: J. Comput. Phys. 185, 213 (2003)

2. G. Ben-Dor: Shock wave reflection phenomena. Springer, Newyork, 1992

3. R. Fedkiw, T. Aslam, B. Merriman, S. Osher: J. Comput. Phys. 152 457 (1999)

4. H. Forrer, M. Berger: Flow simulation on Cartisian grids invloving complex moving geome-

tries flows. In: Int. Ser. Numer. Math., 129, Birkhduser, Basel, 1998

X.Y. Hu, B. C. Khoo: J. Comput. Phys. 198, 35 (2004)

. X.Y. Hu, B. C. Khoo: Numerical studies on shock cell interaction. In: The 25th International

Symposium on Shock Waves , Beijing, July 20 - 25, China, 2004

7. G. S. Jiang, C. W. Shu: J. Comput. Phys. 126 202(1996)

8. M. Mandella, D. Bershader: ATAA paper No. 87-0528

9. S. Osher, J. A. Sethain: J. Comput. Phys. 79 12 (1988)

10. R. C. Ripley, D. R. Whitehouse, F. S. Lien: Effect of mesh topology on shock wave loading
computations. In: CFD2003, Vancouver, May 28-30, Cananda, 2003

11. C. W. Shu, S. Osher: J. Comput. Phys. 77 439 (1988)



