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Abstract

A multi-phase smoothed particle hydrodynamics (SPH) method for both macro-
scopic and mesoscopic flows is proposed. Since the particle-averaged spatial deriva-
tive approximations are derived from a particle smoothing function in which the
neighboring particles only contribute to the specific volume, while maintaining mass
conservation, the new method handles density discontinuities across phase interfaces
naturally. Accordingly, several aspects of multi-phase interactions are addressed.
First, the newly formulated viscous terms allow for a discontinuous viscosity and
ensure continuity of velocity and shear stress across the phase interface. Based
on this formulation thermal fluctuations are introduced in a straightforward way.
Second, a new simple algorithm capable for three or more immiscible phases is
developed. Mesocopic interface slippage is included based on the apparent slip as-
sumption which ensures continuity at the phase interface. To show the validity of
the present method numerical examples on capillary waves, three-phase interactions,
drop deformation in a shear flow, and mesoscopic channel flows are considered.
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1 Introduction

For decreasing length scales and increasing time scales, multi-phase forces,
such as those caused by viscosity difference or surface tension, may become
comparable to inertial forces even though the overall flow can be considered
as macroscopic. When length scales decrease further to the order of µm or
smaller the flow may become mesoscopic. In a mesoscopic flow multi-phase
forces usually dominate inertial forces, and thermal fluctuations affect the

Manuscript of Xiangyu Hu 12 May 2005



flow behavior strongly. Many industrial, environmental, and biological appli-
cations involve macroscopic and mesoscopic flow problems with the presence
of multiple fluid phases. A variety of methods has been developed to study
the above problems numerically. In general, there are two main approaches
which can be distinguished by the way of handling phase interfaces: one is the
Eulerian approach, such as the volume of fluid (VOF) method (Scardovelli
and Zaleski 1999), the level set method (Sethian and Smereka 2003) and the
lattice Boltzmann method (LBM) (Chen and Doolen 1998); the other is the La-
grangian approach, such as vortex methods (Cottet and Koumoutsakos 2000;
Koumoutsakos 2005), molecular dynamics (MD) (Koplik and Banavar 1995),
and dissipative particle dynamics (DPD) (Hoogerbrugge and Koelman 1992).

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian, grid free method
in which the introduction of a smoothing kernel to approximate functions and
their spatial derivatives from the interactions carried by neighboring parti-
cles. The SPH algorithm itself is similar to that of MD but uses additional
thermodynamic variables which are obtained from a coarse graining procedure
of the underlying continuum physics. Since its introduction by Lucy (1977)
and Gingold and Monaghan (1977), SPH has been applied to a wide range of
macroscopic flow problems (Monaghan 1992). Recently, the method has been
extended to smoothed dissipative particle dynamics (SDPD) for mesoscopic
problems (Español and Revenga 2003). Unlike DPD (Español et al. 1995;
Groot and Warren 1997), SDPD allows to choose an equation of state and
to specify transport coefficients directly. The thermal fluctuations can also be
included in a physically consistent way, by which the fluctuation magnitude
increases naturally while the physical scale of the problem decreases to the
mesoscopic scale.

Despite its fully Lagrangian property, when the standard formulation of SPH
is applied to multi-phase flows only small density differences are permitted
between the considered phases because it is implicitly assumed that the den-
sity gradient is much smaller than that of the smoothing kernel (Monaghan
1994; Monaghan and Kocharyan 1995). As a remedy, Richie and Thomas
(2001) suggest a summation of the particle-averaged pressure, not density,
to handle large density gradients. However, their method does not satisfy
mass conservation. Colagrossi and Landrini (2003) modify the approximation
form of spatial derivatives to diminish the effects of large density difference
across the interface. However, since the density summation is replaced by a
non-conservative density evolution equation mass conservation is not satisfied
either. Although the conservation errors are decreased somehow by a special
density re-initialization approach, they may accumulate and affect the flow
behavior considerably in long time computations.

In this paper the basic approximations for particle-averaged spatial deriva-
tives are derived from a particle smoothing function in which neighboring
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particles only contribute to the specific volume but not to the density. The
resulting algorithm resolves a density discontinuity at a phase interface nat-
urally and satisfies mass conservation since a density summation equation is
employed. With the new algorithm several aspects of multi-phase interactions
are addressed. First, newly formulated viscous terms allow for viscosity dis-
continuity and ensure continuity of velocity and shear stress across the phase
interface. Based on this formulation mesoscopic thermal fluctuations are intro-
duced in a straightforward way. Second, a new algorithm capable of handling
three or more immiscible phases is developed. It is simple and conservative,
and circumvents the difficulties of calculating the normalized interface direc-
tion and curvature near the fringe of the interface. Furthermore, mesoscopic
interface slippage is modeled based on the apparent slip assumption which
ensures continuity at the phase interface. In this paper the isothermal form of
Navier-Stokes equation is considered. The extension of the method to include
a transport equation for energy is straightforward.

2 Method

We consider the isothermal Navier-Stokes equations on a moving Lagrangian
grid

dρ

dt
=−ρ∇ · v (1)

dv

dt
= g − 1

ρ
∇p+ F +

F(1)

ρ
(2)

where ρ, v and g are material density, velocity and body force, respectively.
A simple equation of state is p = −κTV in which κT is the isothermal com-
pressibility. It can be rewritten as

p = a2ρ. (3)

When Eq. (1) and (2) are used for modeling of low Reynolds number in-
compressible flows with the artificial compressible method a is equal to the
artificial speed of sound. An alternative equation of state for incompressible
flows is

p = po

(
ρ

ρo

)γ

+ b (4)

where po, ρo, γ and a are parameters. The parameters in Eq. (3) and (4) may
be chosen based on a scale analysis (Monaghan 1992, Morris et al 1997, Morris
1999) so that the density variation is less than a given value. F denotes the
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viscous force

F =
1

ρ
∇ · Π(ν) (5)

where the shear stress is Π(ν) = η(∇v +∇vT ) if the bulk viscosity is assumed
as ζ = (2/d)η, and d is the spatial dimension. For incompressible flow the
viscous force simplifies to

F = ν∇2v (6)

where ν = η/ρ is the kinematic viscosity . F(1) denotes the surface force which
acts on the interface surface only. For an immiscible mixture the surface force
is given as

F(1) = α(∇ · n̂)n̂ (7)

where α is surface tension coefficient, κ = ∇ · n̂ and n̂ are curvature and nor-
malized interface direction, respectively. Note that body force, pressure, and
surface force are conservative forces. Since the diffusion effects are neglected
in the current model the dissipative effects are due to viscous forces only.

2.1 Smoothed particle in a multi-phase mixture

For an S-phase mixture we introduce the smoothing function for particle i

χi(r) =
W (r− ri, h)∑

k W (r − rk)
=
Wi(r)

σ(r)
(8)

where ri gives the position of particle i, k = 1, ..., N , N is the total parti-
cle number and h is the smoothing length. W (r) is a generic shape function
known as the SPH smoothing kernel which is radially symmetric and has the
properties

∫
W (r − r′, h)dr′ = 1 and limh→0W (r − r′, h) = δ(r − r′). σ(r) is

a measure of the particle number density which has a larger value in a dense
particle region than in a dilute particle region (Koshizuka et al. 1998). χi(r)
has the same form of the moving least square (MLS) approximation that re-
produces the constant function, which is called Shepherd function (Shepherd
1968). In Flekkøy et al. (2000) and Serrano and Español (2001) χi(r) is em-
ployed for Voronoi-type DPD formulations. Note that χi(r) vanishes when r
is outside the support domain of Wi(r).

The smoothing function is normalized to unity by
∑

i χi(r) = 1 and has the
spatial derivatives

∇χi(r) =
1

σ(r)

∑
j

[χj(r)∇Wi(r) − χi(r)∇Wj(r)] (9)
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where ∇Wi,j(r) = ∇W (r − ri,j). We also introduce the volume of a particle
through the integral over the entire domain

Vi =
∫
χi(r)dr =

∫
1

σ(r)
W (r − ri)dr ≈ 1

σi

(10)

which shows that σi = σ(ri) is approximately the inverse of the particle vol-
ume, i.e. the specific volume. By the normalization property of χi(r) the par-
titioning condition

∑
i Vi = Vtotal is satisfied. For a smooth variable ψ(r) we

define the particle-averaged value and the particle-averaged spatial derivative
by

ψi =
1

Vi

∫
χi(r)ψ(r)dr and ∇ψi =

1

Vi

∫
χi(r)∇ψ(r)dr, (11)

respectively. With integration by parts and Eq. (9) the particle-averaged spa-
tial derivative is obtained by

∇ψi =− 1

Vi

∫
∇χi(r)ψ(r)dr

=− 1

Vi

∑
j

∫ ψ(r)

σ(r)2
[Wj(r)∇Wi(r) −Wi(r)∇Wj(r)] dr. (12)

The right-hand side represents an inter-particle integration between particle
i and j. Similarly to Eq. (10) the two integrals on the right-hand side of Eq.
(12) are approximated separately to obtain

∇ψi ≈
∑
j

(
ψi

σ2
i

+
ψj

σ2
j

)
σi
∂W

∂rij
eij (13)

in which ∂W
∂rij

eij = ∇W (ri − rj), and ∂W
∂rij

≤ 0, ri − rj = rij = rijeij, and eij is

the normalized vector from particle i to j.

As shown in Fig. 1, the inter-particle interactions Wi∇Wj and Wj∇Wi vanish
outside of the overlap of the supports of Wi(r) and Wj(r). Since all points in
this domain have less distances to both particles i and j it is reasonable to
approximate ψ(r) by an inter-particle-averaged value ψij = ψ(ψ(ri), ψ(rj)).
Accordingly, the integration in Eq. (12) can be approximated as

∇ψi ≈− 1

Vi

∑
j

ψij

∫
1

σ(r)2
[Wj(r)∇Wi(r) −Wi(r)∇Wj(r)] dr

≈∑
j

(
1

σ2
i

+
1

σ2
j

)
σiψij

∂W

∂rij
eij. (14)
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A simple inter-particle average is ψij = 1
2
[ψ(ri) + ψ(rj)]. For ψ = ∇ϕ the

inter-particle average can be approximated by ∇ϕij = eij

rij
(ϕ(ri)−ϕ(rj)). It is

possible to formulate other approximations, e.g. with bias toward one particle
when strong interactions are considered. For instance, Inutsuka (2002) solves
a Riemann problem to obtain the inter-particle average state. Note that, by
considering the effects of all the particles inside the mentioned overlap domain
higher order approximations for the inter-particle integration may be derived.
Therefore, Eq. (13) and (14) may be extended to achieve higher spatial accu-
racy. Since the focus on this paper is on modeling of complex fluids we consider
here only the straightforward approximations as stated above.

2.2 Density evolution equation

The average density of a particle is ρi = mi/Vi in which mi is the mass of a
particle. According to Eq. (10) the evolution equation for the particle density
used here is

ρi = miσ(ri) = mi

∑
j

Wij (15)

where Wij = W (rij) = W (ri − rj). This form conserves mass exactly and
is similar to the common SPH density approximation ρi =

∑
j mjWij . The

difference is that in the current approximation neighboring particles contribute
to the particle density only by affecting the specific volume of particle i. Since
there is no mass contribution from neighboring particles Eq. (15) allows for
density discontinuities when there are large particle-mass differences between
nearby particles. Actually, if one defines the particle smoothing function as
χi(r) = miW (r − ri)/

∑
k mkW (r − rk) as in Hietel et al. (2000) the form

ρi =
∑

j mjWij can be derived from Eq. (10).

2.3 Momentum equation

2.3.1 Pressure

When ψ is set as the pressure p, according to Eq. (2) and (13) the particle
acceleration caused by pressure is obtained as

dv
(p)
i

dt
= − 1

mi

∑
j

(
pi

σ2
i

+
pj

σ2
j

)
∂W

∂rij

eij. (16)

Since this expression has anti-symmetric form with respect to exchanging i
and j global conservation of momentum is satisfied. Eq. (16) is similar to the
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form preferred by Monaghan (1992). Again, if the particle smoothing function
is given by χi(r) = miW (r− ri)/

∑
k mjW (r− rk) the same expression can be

derived with the inter-particle integral of Eq. (12).

2.3.2 Viscous force

For the flow in the bulk phase s, similar to Flekkøy et al. (2000), the inter-
particle-averaged shear stress is approximated as

Π
(v)
ij =

ηs

rij

(eijvij + vijeij) (17)

where vij = vi − vj. If particle i belongs to phase k and particle j belongs
to phase l one can assume that the phase interface is located at the center m
between particle i and j and is normal to the inter-particle vector rij . To ensure
the continuity of shear stress and velocity across the interface one requires

ηk

rim

(eimvim + vimeim) =
ηl

rmj

(emjvmj + vmjemj) (18)

where rim = rmj = 1
2
rij, eim = emj = eij and vij = vim + vmj , as shown in

Fig. 2. The inter-particle-averaged shear stress at the k − l phase interface is
accordingly

Π
(v)
ij =

2ηkηl

rij(ηk + ηl)
(eijvij + vijeij). (19)

Hence, the particle acceleration due to shear force at the interface in conser-
vative form is given by

dv
(v)
i

dt
=

1

mi

∑
j

2ηkηl

ηk + ηl

(
1

σ2
i

+
1

σ2
j

)
1

rij

∂W

∂rij

(eij · vijeij + vij). (20)

A comparison with the viscous-force formulation in Flekkøy et al. (2000) shows

that the term
(

1
σ2

i
+ 1

σ2
j

)
∂W
∂rij

eij is equivalent to the effective inter-particle in-

terface area. Note that, for incompressible flows, Eq. (20) simplifies to

dv
(v)
i

dt
=

1

mi

∑
j

2ηkηl

ηk + ηl

(
1

σ2
i

+
1

σ2
j

)
vij

rij

∂W

∂rij

(21)

according Eq. (6).
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2.3.3 Surface force

The computation of the interface curvature usually is cumbersome. As a rem-
edy, in the continuous surface force model (CSF) (Lafaurie et al. 1994), the
surface force in Eq. (7) is rewritten as a tensor form F(1) = ∇·Π(1), where the
surface stress is

Π(1) = α(I− n̂n̂)|∇C|. (22)

Here, ∇C is the gradient of a color index C which has a unit jump across the
interface, and n̂ = ∇C

|∇C| . Because I − n̂n̂ has a trace of d− 1 , d is the spatial

dimension, there is a negative pressure contribution d−1
d
α|∇C| to the surface

stress according to Eq. (2). As this negative pressure has no contribution to
surface tension, it is reasonable to rewrite Eq. (22) as

Π(1) = α(
1

d
I − n̂n̂)|∇C| (23)

to eliminate its effects. Another reason for this procedure is that Morris (1999)
suggested that a negative pressure may cause stability problems in high reso-
lution computations.

Since |∇C| is represented numerically on an interface with finite width and
approaches zero at its fringe a direct computation of n̂ may be erroneous. As
suggested by Wu et al. (1998) this difficulty can be resolved by rewriting Eq.
(23) as

Π(1) = α
1

|∇C|(
1

d
I|∇C|2 −∇C∇C) (24)

which is well defined on the entire domain and vanishes naturally when |∇C|
becomes zero.

We define the color index as

Cs
i =

⎧⎨
⎩1 if particle i belongs to s

0 else
, s = 1, . . . , S (25)

and
∑

s C
s = 1. The color index of each particle does not change throughout

the computation. Note that the above definition is also valid for immiscible
mixtures with thee or more phases. For particle i of phase k, a non-vanishing
color-index gradient exists if there are neighboring particles of phase l, l �= k,
i.e.

∇Ckl
i = σi

∑
j

[
C l

i

σ2
i

+
C l

j

σ2
j

]
∂W

∂rij

eij , l �= k (26)
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in which C l
i ≡ 0. Accordingly the k − l phase interface stress is obtained as

Π
(1)
kl = α

1

|∇Ckl|(
1

d
I|∇Ckl|2 −∇Ckl∇Ckl), l �= k. (27)

Hence, the total surface stress of particle i is

Π(1) =
∑

l

Π
(1)
kl , l �= k. (28)

Similarly to the formulation of the pressure term the particle acceleration due
to surface tension is written in the conservative form as

dv
(1)
i

dt
=

1

mi

∑
j

∂W

∂rij
eij ·

⎛
⎝Π

(1)
i

σ2
i

+
Π

(1)
j

σ2
j

⎞
⎠ . (29)

2.4 Mesoscopic hydrodynamics

2.4.1 Smoothed dissipative particle dynamics

In the current SPH method the irreversible part of the particle dynamics is

ṁi|irr =0

Ṗi|irr =
∑
j

2ηkηl

ηk + ηl

(
1

σ2
i

+
1

σ2
j

)
1

rij

∂W

∂rij
(eij · vijeij + vij). (30)

According to the GENERIC formalism (Grmela and Öttinger 1997; Öttinger
and Grmela 1997; Serrano et al. 2001), the mass and the momentum fluctua-
tions of particle i caused by thermal noise are postulated to be

dm̃i =0

dP̃i =
∑
j

BijdW ij · eij (31)

where dW ij is the traceless symmetric part of a matrix of independent incre-

ments of a Wiener process dWij = dWji , i.e. dW ij = (dWij + dWT
ij )/2 −

tr[dWij ]I/d, d is the spatial dimension. The isothermal deterministic irre-
versible equations are obtained as

ṁi|irr =0

Ṗi|irr =−∑
j

B2
ij

4kBT
(eij · vijeij + vij) (32)
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in which kB is the Boltzmann constant and T is the system temperature.
Comparing Eq. (32) to (30) one obtains

Bij =

[−8kBTη
kηl

ηk + ηl

(
1

σ2
i

+
1

σ2
j

)
1

rij

∂W

∂rij

]1/2

. (33)

2.4.2 Interface slip

If it is assumed that a fluid has a slightly different viscosity within a layer
near the interface compared to the bulk, see Fig. 3, apparent interface slip is
permitted (Granick et al. 2003). Unlike true slip an apparent slip allows for
continuous velocity and shear stress at the interface. For a k− l phase particle
pair the shear stress is

ηk

rim + bkl
(eimvim + vimeim) =

ηl

rmj + blk
(emjvmj + vmjemj) (34)

where bkl is the slip length from k phase to l phase, and from l phase to k
phase is blk. The two slip lengths are not necessarily the same. Accordingly,
the inter-particle-averaged shear stress becomes

Π
(v)
ij =

2ηkηl(eijvij + vijeij)

ηk(rij + 2bkl) + ηl(rij + 2blk)
(35)

and the momentum fluctuation magnitude is

Bij =

[ −8kBTη
kηl

ηk(rij + 2bkl) + ηl(rij + 2blk)

(
1

σ2
i

+
1

σ2
j

)
∂W

∂rij

]1/2

. (36)

2.5 Solid walls

The solid body region is filled with virtual particles (Randles and Libersky
1996). Whenever the support of a fluid particle overlaps with the wall sur-
face a virtual particle is placed inside of the solid body, and mirrored at
the surface. The virtual particles have the same volume (i.e. mass and den-
sity), pressure and viscosity as their fluid counterparts but the velocity is
given as vvirtual = 2vwall − vreal for a no-slip velocity boundary condition or
vvirtual = vreal for a free slip boundary condition. For considering wall-fluid in-
teractions, virtual particles are set to an independent phase w and are treated
the same way as fluid particles. The corresponding fluid-wall surface energy
αfw and slip lengths bwf = bfw, if apparent slip is permitted, are also speci-
fied independently as input parameters. Currently, only straight channel walls
are considered. For curved wall surfaces, the virtual particle approach may
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introduce considerable errors. To increase the accuracy near curved surfaces,
Takada et al. (1994) and Morris et al. (1997) have introduced special wall
particles which interact with the fluid particles in such a way that imposed
boundary conditions are satisfied. How to incorporate the these approaches
into the current SPH formulation is one of the objectives of further investiga-
tions.

3 Numerical examples

The following two-dimensional numerical examples are provided to validate
the proposed multi-phase SPH method. For all cases a quintic spline kernel
(Morris et al. 1997) and a second order predictor-corrector time integration
are used. A constant smoothing length, which is kept equal to the initial dis-
tance between the nearest particles, is used for all the test cases. To maintain
numerical stability a Courant-Friedrich-Lewy time step restriction based upon
artificial sound speed (isothermal compressiblity), body force, viscous and sur-
face tension is employed (Monaghan 1992; Morris et al. 1999). When thermal
fluctuations are introduced in the mesoscopic simulation the time steps are
further decreased to recover the correct kinetic temperature. Note that as
there may be two or more phase interface with large density differences the
time-step estimated based on the capillary-wave phase velocity, as suggested
by Brackbill et al. (1992), is modified to

∆t ≤ 0.25 min

(
min(ρk, ρl)h

3

2παkl

)1/2

, k �= l (37)

Accordingly, the artificial sound speed should be comparable with

a2 ∼ max

(
αklκkl

c

min(ρk, ρl)∆

)
, k �= l (38)

where κkl
c is the typical curvature of the k − l phase interface and ∆ is the

desired relative density variation.

3.1 Capillary wave

We consider two problems of circular liquid-droplet oscillation under the ac-
tion of capillary forces. The first problem is a droplet oscillating in a liquid
phase with the same density, i.e. ρd = ρl. The second problem is a droplet
oscillating in a gas phase with large density ratio, i.e. ρd/ρg >> 1. Numerical
computations for similar problems but with different SPH implementations
can be found in Morris (1999) and Nugent and Posch (2000).
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For the first problem, the computation is performed in a domain −1/2 < x <
1/2 and −1/2 < y < 1/2 using fluids of the same density ρd = ρl = 1 and equal
viscosity η = 0.05. No-slip boundary conditions are applied at all the domain
boundaries. A droplet of radius R = 0.1875 is placed at the domain center
and the symmetry axes are x = 0 and y = 0. The surface tension coefficient
is α = 1 and the artificial sound speed is about 10. To all particles divergence
free initial velocity vx = V0

x
r0

(1− y2

r0r
) exp(− r

r0
) and vy = V0

y
r0

(1− x2

r0r
) exp(− r

r0
)

is assigned, where V0 = 10, r0 = 0.05, and r is the distance from the position
(x, y) to the droplet center. In order to study the convergence properties the
calculation is carried out with 900, 3600, 14400 particles, respectively.

Figure 4 shows the positions of the droplet particles at t = 0, t = 0.08,
t = 0.16 and t = 0.26 for a total particle number of 14400. Comparing to the
results of Morris (1999) (their Fig.6) at about the same resolution the agree-
ments are good while our results produce a more regular particle distribution
which suggests a smoother surface tension at the interface and smaller den-
sity fluctuations inside the droplet. Note that the hexagonal lattice used by
Morris matches better the initial droplet geometry than our rectangle lattice.
The latter, however, is easier to implement and quite suitable for symmetric
shapes. Results with different resolutions are compared up to time t = 0.5
with 100 time samples, and the relative error between different resolutions is
calculated by EN,4N =

∑0.5
t=0 |fN − f4N | where fN and f4N are selected global

quantities. Figure 5 compares the variation of the center-of-mass position and
velocity of the upper left 1/4 part of the droplet. Convergence orders of 0.9
and 0.83, respectively, are obtained. Note there is no mass-loss error in the
computations demonstrating that the current method conserves mass.

For the second problem, the initially prescribed-divergence free velocity is
decreased for small amplitude oscillations. The droplet has a radius of R = 0.2,
a density of ρd = 1, and a viscosity of ηd = 5 × 10−2. The gas phase has a
density of ρg = 10−2 and a viscosity of ηg = 5 × 10−3, which gives a density
ratio of 100 and a viscosity ratio of 10. The artificial sound speed is 20 or
larger in order to decrease the effects of pressure waves caused by artificial
compressibility. The calculation is carried out with 3600 particles in which the
droplet is filled with 404 particles which is about 1/8 of that in Nugent and
Posch (2000). For a free droplet oscillation, the theoretical relation between

the period τ and the surface tension is τ = 2π
√

R3ρl

6α
. Figure 6a shows the

center-of-mass position of the upper left 1/4 part of the droplet for α = 1.
The measured period is 0.232 which is in good agreement with the theoretical
value of 0.229. Note the mass center position is slightly distorted by the high
frequency but low amplitude oscillations caused by artificial sound waves. The
calculated relation between α and τ is plotted in Fig. 6b which shows that the
largest deviation from the theoretical values is less than 5%.
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3.2 Three-phase interaction

We consider two stationary problems with three phases. In the first problem
all three phases are free to move. In the second problem a solid wall with
different wetting properties is considered as a separated phase. According to
the Young-Laplace theory, at equilibrium, the three phases and interfaces meet
at the triple-phase point and the angles between the interfaces satisfy

α12 =α13 cos θ1213 + α23 cos θ1223

α13 =α12 cos θ1213 + α23 cos θ1323 (39)

α23 =α12 cos θ1223 + α13 cos θ1323

where θ1213 stands for the angle between the 1−2 phase interface and the 1−3
phase interface, and so forth for θ1223 and θ1323. If one of the three phases is
replaced by a solid wall Eq. (39) simplifies to

α1w = α12 cos θ + α2w (40)

where θ is the contact angle. We compare our numerical results with these
analytical solutions.

For the first problem the computation is performed on the domain 0 < x < 1
and 0 < y < 0.5 where fluid 1 occupies the left-top region, fluid 2 occupies the
right-top region, and fluid 3 occupies the region defined by y < x + 0.25 and
y < −x+ 0.75, as shown in Fig. 7a. Free-slip boundary conditions are applied
at the boundaries. The calculation is carried out with 1800 particles. Figure
7b shows the positions of particles when α12 = α13 = α23 = 1. Note the angles
between all the three interfaces recover 120o, which is the analytical solution of
Eq. (39). The calculations also show that, when α23 increases, the angle θ1213

decreases accordingly. Figure 7c indicates the positions of particles when α23 is
increased to 1.717. Again, the measured interface angles are in good agreement
with the analytical solution which gives θ1213 = 90o and θ1223 = θ1323 = 135o.
The consistency of the model using three different color indices for two phases
is also examined. Fig. 7d shows the positions of particles when there is no
surface tension between fluid 1 and fluid 2. The interface configuration gives
θ1213 = 180o and θ1223 = θ1323 = 90o which is equivalent to that of a circular
interface between two phases.

For the second problem, the computation is performed on the domain −1 <
x < 1 and 0 < y < 1. Fluid 2 is set to occupy the region of −0.5 < x < 0.5
and 0 < y < 0.3, and fluid 1 is set to occupy all the rest of the computational
domain while the lower boundary is a solid wall. Free-slip boundary conditions
are applied the domain boundaries and the symmetry axis is x = 0. The
calculation is carried out with 1800 particles. For α12 = α1w = 1 and α2w = 1.5
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the measured contact angle θ is close to 120o (see Fig. 8a), and for α12 = α1w =
1 and α2w = 0.5 the measured contact angle decreases to 60o (see Fig. 8b).
Note that both results are in good agreement with the analytic solutions of
Eq. (40).

3.3 Drop deformation in shear flow

We consider a circular drop with initial radius Ro in a Couette flow with
top and bottom wall velocity of ±v, respectively. The periodic computational
domain is the region 0 < x < 8Ro and 0 < y < 8Ro in which the drop is
centered at (4Ro, 4Ro). The calculation is carried out with 9216 particles. The
drop deforms with the flow until a balance between viscous stresses and surface
tensions is reached. When the drop and the shearing fluid have the same
viscosity the ratio of these two forces can be expressed by the capillary number
Ca = 0.25ηv/α. The Reynolds number is given by Re = 0.25ρRov/η. The
steady-state deformation of the drop is measured by a deformation parameter
D = (L−B)/(L+B) where L and B are the drop’s half-length and half-width,
respectively.

Figure 9a show the final equilibrium stage when Ca = 0.15 and Re = 0.5.
The deformed drop is ellipsoidal with its major axis approximately 45o to
the x direction. The measured D is about 0.145 which is close to the result
obtained by Zhou and Pozrikidis (1993) with a boundary element method.
Figure 9b illustrates the comparisons of their results and the current calculated
deformation for several capillary numbers. The agreement is good and the
maximum difference is within 6%. Note that the deformation is slightly less
than that of Zhou and Pozrikidis, caused by the effect of a smaller domain
size in x direction. The drop deformation in the case of different viscosities is
also examined. Shown in Fig. 10 are the results for Ca = 0.15 and Re = 0.5
with ηd/ηc = 2 and 0.5, where ηd is the viscosity of the drop and ηc the
shearing fluid. The observed deformation decreases or increases accordingly.
These results are in accordance with the predictions for three-dimensional
drops of Taylor (1934).

3.4 Mesoscopic flow in a channel

We consider three mesoscopic flow problems which may suggest different mech-
anisms for mesoscopic wall slippage. The first problem examines the possibility
of effective slip caused by nano-bubbles attached to the wall surface. The sec-
ond problem evaluates the slip length when apparent slip is permitted. The
third problem is the moving contact line problem. In all cases, no-slip bound-
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aries are used for the wall surface. Since there is no particle placed right at
the wall surface the possible singularity is circumvented.

For the first problem the computational domain is 0 < x < 1µm and 0 < y <
1µm. The calculation is carried out with 900 particles. Most of the particles
are water particles with density of 1000 kg/m3 and viscosity of 10−6 kg/ms
while 1/3 of particles attaching to the low boundary are single particle gas
bubbles with density of 25 kg/m3 and viscosity of 2.5 × 10−7 kg/ms (see Fig.
11a). Each bubble has a radius of about 20 nm. The top wall is assigned
with the velocity of 2v = 10−6 m/s. Periodic boundary condition is used in
the flow direction. No surface tension or thermal fluctuation are considered
in the computation. The problem is computed up to t = 600 ms, no steady
solution is obtained, and the velocity profile oscillates periodically while the
nano-bubbles stay attached to the wall surface. The time-averaged velocity
profile is plotted in Fig. 11b which shows that there is finite effective slip at
the lower boundary. This result is in qualitatively agreement with analytic
work of Lauga and Stone (2003) on pressure driven flow. When calculated by
be = H(vave − v)/v where H is the channel height, the average effective slip
length is about 27 nm which has the same magnitude of what is observed in
several experiments (Cottin-Bizonne et al. 2002; Pit et al. 2000).

For the second problem the same computational domain is used while the
lower half is filled with fluid 1 which has the density of 1000 kg/m3 and
viscosity of 10−6 kg/ms, and the upper half with fluid 2 which has the same
density but slightly less viscosity of 8 × 10−7 kg/ms. Apparent slip between
the two fluids is permitted and given as b12 = 50 nm and b21 = 0. The lower
wall is considered as a separated phase with an apparent slip of 50 nm at
the fluid-wall surface, i.e. bfw = bfw = 50 nm. The fluid-fluid surface tension
coefficient is 10−9 Pa·m and no surface energy is considered at the fluid-wall
surface. The isothermal compressibility is given as a = 10−3 m/s and the
thermal fluctuation is introduced with a temperature of T = 300 K. Periodic
boundary conditions are used in the x direction. The calculation is carried out
with 900 particles and time steps of about dt = 10−7 s. To verify the thermal
fluctuation the computation is first carried out without imposed shear. The
calculated results show that the system reaches the correct kinetic temperature
within several ms (see Fig. 12a). Figure 12b shows the measured equilibrium
momentum distribution which fits a Gaussian distribution. The equilibrium
results are employed as the initial condition for further computations. The
upper and lower walls are assigned with the velocity of v = ±10−6 m/s,
respectively. The time-averaged velocity profile along the y direction in steady
state is plotted in Fig. 13a. Note that there is considerable slip at the fluid-fluid
interface and the lower fluid-wall surface. The measured slip length between
the two fluids is about 24 nm and about 1/2 of b12, which suggests an average
effect of b12 and b21. The measured slip velocity at the lower wall is about 4.8×
10−6 m/s which corresponds to a slip length of 48 nm. Figure 13b compares

15



the measured and input values for several slip lengths on the wall up to 75
nm and good agreement is found.

For the third problem, we consider a mesoscopic two-phase Couette flow in a
0.5 µm × 2 µm channel. The two fluids have the same density and viscosity
of 1000 kg/m3 and 10−6 kg/ms, respectively. The fluid-fluid surface tension
coefficient and the two fluid-wall interface surface energy are all set as 10−9

Pa·m and the static contact angle of the fluid-fluid interface at the solid wall
is 90o. The upper and lower walls are assigned with velocity of ±10−4 m/s,
respectively . The isothermal compressibility is given as a = 10−3 m/s and the
thermal fluctuation is introduced with a temperature of T = 300 K. Periodic
boundary conditions are used in the x direction. The calculation is carried
out with 1800 particles with time steps of about dt = 10−7 s. Figure 14
shows the instantaneous particle positions for the steady state and the time-
averaged velocity field and interface position. Note that for regions far from the
contact line the velocity profile along the y direction is typical for Couette flow
while large deviations exist in the regions near the contact line (see Fig. 14).
These results are in qualitatively agreement with MD simulations of Thompson
and Robbins (1989) and Qian et al. (2003). Note that the current results are
obtained with no-slip boundary conditions which suggest that the slip near
the contact line actually is an apparent slip and there is no real slip right at
the wall surface.

4 Concluding remarks

We have developed a multi-phase SPH method from a particle smoothing
function in which the neighboring particles only contribute to the specific
volume but not density. While handling density discontinuity naturally and
conservatively the new method is also capable of multi-viscosity, multi-surface
tension, fluid-wall interactions, mesoscopic thermal fluctuations, and inter-
face slippage. Numerical examples are investigated and compared with ana-
lytic solutions, previous results and experiments. The results suggest that the
method can be faithfully applied to both macroscopic and mesoscopic multi-
phase flows. Since its construction is based on the standard SPH method the
involved approximations are simple to implement and suitable for straight-
forward extension to three dimensions. In addition, since the color index of
each particle does not change throughout the computation and, therefore no
color-index evolution equation is needed, the computational cost only increases
slightly when the number of phases is increased. Finally, as the currently used
inter-particle integration approximation for determining the particle-averaged
spatial derivatives can be extended to more accurate formulations our method
suggests a way for implementing SPH methods with higher order of accuracy.
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