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Abstract

An incompressible multi-phase SPH method is proposed. In this method, a fractional
time-step method is introduced to enforce both the zero-density-variation condition
and the velocity-divergence-free condition at each full time step. To obtain sharp
density and viscosity discontinuities in an incompressible multi-phase flow a new
multi-phase projection formulation, in which the discretized gradient and diver-
gence operators do not require a differentiable density or viscosity field is proposed.
Numerical examples for Taylor-Green flow, capillary waves, drop deformation in
shear flows and for Rayleigh-Taylor instability are presented and compared to the-
oretical solutions or references from literature. The results suggest good accuracy
and convergence properties of the proposed method.
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1 Introduction

The smoothed particle hydrodynamics (SPH) method is a fully Lagrangian,
grid free method in which a smoothing kernel is introduced to approximate
functions and their spatial derivatives originating from the interactions with
neighboring particles. Since its introduction by Lucy [?] and Gingold & Mon-
aghan [?], SPH has been applied to a wide range of flow problems [?] [?]. The
original formulation of SPH is for compressible flows and permits the evolu-
tion of fluid densities along flow trajectories. When SPH is applied to simulate
incompressible flows, there are generally two ways to impose incompressibil-
ity: one is the weakly compressible SPH formulation [?][?][?] [?][?][?] which
approximates incompressibility by assuming a small Mach number, usually
M ≤ 0.1; the other is the incompressible SPH in which incompressibility is
enforced by solving a Poisson equation with a source term proportional to the
velocity divergence [?] or the density variation [?]. Compared with weakly com-
pressible SPH the latter gives more accurate solutions and is computationally
more efficient for flow phenomena at moderate to high Reynolds numbers.
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In an ideal incompressible SPH computation particles should adjust their po-
sitions to an uniform distribution so that their density variation vanishes.
If only a discrete velocity-divergence-free condition is enforced larger density
variation or particle clustering may occur due to the spatial truncation error
of the discretization scheme. Furthermore, the density errors can accumulate
during long time computations [?]. Pozorski & Wawreńczuk [?] suggested to
solve simultaneously the Poisson equations related to density variation and
related to velocity divergence. However, their method does not solve the dif-
ficulties concerning particle clustering and density-error accumulation. Ellero
et al. [?] introduce the SHAKE algorithm of molecular dynamics to constrain
the density variation. While correcting the density error by modifying particle
position iteratively, their method produces relatively larger particle clustering
than that of the weakly compressible SPH.

For multi-phase flows the interface represented by SPH is usually strongly
smeared since both the divergence and gradient operators are commonly for-
mulated stipulating a differentiable density field with a gradient much smaller
than that of the smoothing kernel [?] [?]. Hu & Adams [?] have proposed a
new particle-averaged spatial derivative approximation to handle density and
viscosity discontinuities directly without smearing. Since there is no transition
region with large density gradient, no spurious pressure (artificial surface ten-
sion) is introduced [?]. This method, however, is based on a weakly compress-
ible SPH formulation which in practice is limited to small Reynolds numbers
or meso-scopic flows.

In this paper, a technique for a multi-phase SPH by enforcing simultaneously
constraints on density variation and on velocity is developed. The essential
steps are that first the intermediate particle velocities are computed at the
intermediate half time step and at the full time step, respectively, and that
an intermediate particle position at the full time-step is obtained from the
previous time step without enforcing any constraint. In a second step the
intermediate particle position at the full time step is modified iteratively to
satisfy the zero-density-variation condition. At these new particle positions,
the intermediate particle velocity at the full time step is modified by enforcing
the velocity-divergence-free condition. As the viscous forces and surface forces
are always calculated with the constrained particle position and velocity at
full time-steps, the velocity-divergence errors introduced by these forces are
minimized.

Also, the projection method is extended to multi-phase flow following the ap-
proach of Hu and Adams [?]. For this new proposed gradient and divergence
operators which do not involve the assumption of a differentiable density or
viscosity field the density, viscosity and pressure gradient discontinuities are
handled naturally. To allow for highly-efficient linear system solvers, such as
the preconditioned conjugate gradient method, the Poisson operator is dis-
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cretized to result in a symmetric coefficient matrix. It should be emphasized
that, as similar approaches are employed to treat density and divergence con-
straints, the present method introduces only a minor additional complexity
compared to previous incompressible SPH methods.

2 Method

We consider the isothermal incompressible Navier-Stokes equations in a mov-
ing Lagrangian frame

dρ

dt
= 0 or ∇ · v = 0 (1)

dv

dt
=g − 1

ρ
∇p + F +

F(1)

ρ
(2)

where ρ, p, v and g are material density, velocity, pressure and body force, re-
spectively. The two expressions (zero density-variation and velocity-divergence
free) in Eq. (1) give formally equivalent conditions for an incompressible flow.
In the equation of motion Eq. (2), F denotes the viscous force

F = ν∇2v (3)

where ν = η/ρ is the kinematic viscosity. F(1) denotes the surface force which
acts at a phase-interface only. For an immiscible mixture the surface force is
given as

F(1) = ∇ · Π(1) (4)

where the surface stress is

Π(1) = α
1

|∇C|(
1

d
I|∇C|2 −∇C∇C), (5)

and α is a surface-tension coefficient, d is the spatial dimension and ∇C is the
gradient of a color index C which has a unit jump across the interface.

In Hu & Adams [?] the smoothing function for particle i is given by

χi(r) =
W (r− ri, h)∑

k W (r− rk)
=

Wi(r)

σ(r)
(6)

where ri is the position of particle i, k = 1, ..., N . N is the total particle number
and h is the smoothing length. W (r) is a generic shape function known as the
SPH smoothing kernel. σ(r) is a measure of the particle number density which
has a larger value in a dense particle region than in a dilute particle region.
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We also introduce the volume of a particle through the integral over the entire
domain Vi =

∫
χi(r)dr ≈ 1

σ(ri)
which shows that

σi = σ(ri) =
∑

j

Wij, (7)

where Wij = W (rij) = W (ri− rj), is approximately the inverse of the particle
volume, i.e. the specific volume. The particle density is given by

ρi =
mi

Vi

= miσi (8)

where mi is mass of particle. Since mi does not change through the computa-
tion in a mass-conservative incompressible SPH formulation, the zero-density-
variation condition needs that σi is also kept unchanged.

For a smooth variable ψ(r), two forms of discretizations for the particle-
averaged spatial derivative are proposed in Hu & Adams [?]. The second of
these forms is

∇ψi ≈ σi

∑

j

(
1

σ2
i

+
1

σ2
j

)
ψij

∂W

∂rij

eij = σi

∑

j

Aijψijeij (9)

where Aij =
(

1
σ2

i
+ 1

σ2
j

)
∂W
∂rij

, ∂W
∂rij

eij = ∇W (ri − rj), and ∂W
∂rij

≤ 0, ri − rj =

rij = rijeij, and eij is the normalized vector pointing from particle i to j.
ψij = ψ(ψ(ri), ψ(rj)) is an inter-particle-averaged value. Eq. (9) allows to
formulate different inter-particle averages or to assume different inter-particle
distributions. For example, a simple inter-particle average is

ψij =
1

2
[ψ(ri) + ψ(rj)]. (10)

For the particle-averaged second-order spatial derivative one can set ψ = ∇ϕ
to formulate the inter-particle average of the derivative along the direction
from particle i to j by

∇ϕij =
eij

rij

ϕij, (11)

where ϕij = ϕ(ri) − ϕ(rj), and discretize the second-order derivative (Lapla-
cian) directly by

∇ · ∇ϕi ≈ σi

∑

j

Aij
ϕij

rij

. (12)
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2.1 Projection method

A fractional time-step integration approach is used to solve Eqs. (1) and (2).
First, the half-time-step velocity is obtained by

v
n+1/2
i = vn

i +

(
f − 1

ρ
∇p

)n

i

∆t

2
. (13)

Subsequently, the particle position at the new time step is calculated by

rn+1
i = rn

i + v
n+1/2
i ∆t, (14)

and the particle velocity at the new time step is obtained by

vn+1
i = v

n+1/2
i +

(
f − 1

ρ
∇p

)n

i

∆t

2
. (15)

The two incompressibility conditions in Eq. (1) are enforced simultaneously.
The first condition, the zero-density-variation condition, is satisfied by com-
puting the pressure gradient in Eq. (13) to adjust the positions of particles
for an unchanged σi in Eq. (8). The second condition, the velocity-divergence-
free condition, is satisfied by computing the pressure gradients in Eq. (15) to
adjust the particle velocity to obtain a divergence-free velocity field.

2.1.1 Zero-density-variation condition

We split Eqs.(13) and (14) into an intermediate step and into a correction

step. The intermediate velocity v
∗,n+1/2
i and the intermediate particle position

r∗,n+1
i are obtained by

v
∗,n+1/2
i = vn

i + fi (r
n,vn)

∆t

2
, r∗,n+1

i = rn
i + v

∗,n+1/2
i ∆t, (16)

respectively. The intermediate particle density ρ∗,n+1
i satisfies

ρ∗,n+1
i − ρn

i

∆t
+ ρn

i∇i · v∗,n+1/2 = 0. (17)

The half-time-step particle velocity v
n+1/2
i is obtained by

v
n+1/2
i = v

∗,n+1/2
i −

(∇p

ρ

)n

i

∆t

2
. (18)

From the zero-density-variation condition ρn+1
i = ρn

i and the velocity-divergence-
free condition ∇i ·vn+1/2 = 0 one obtains the following relation from Eq. (17)
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and (18)
∆t2

2
∇ ·

(∇p

ρ

)n

i

=
ρn

i − ρ∗,n+1
i

ρn
i

, (19)

which has a similar form as that in [?]. Note that with the relations ρn
i = ρi =

miσ
0
i and ρ∗,n+1

i = miσ
∗,n+1
i Eq. (19) can be rewritten to

∆t2

2
∇ ·

(∇p

ρ

)n

i

=
σ0

i − σ∗,n+1
i

σ0
i

, (20)

in which the right-hand-side equals to the relative error of particle density. At
the new time step the particle position rn+1 can be obtained by the correction
step

rn+1 = r∗,n+1 −
(∇p

ρ

)n

i

∆t2

2
. (21)

In practice Eqs. (20) and (21) are not solved separately but incorporated into
the following iterative scheme

∆t2

2
∇ ·

(∇p

ρ

)n,m−1

i

← σ0
i − σ∗,n+1,m−1

i

σ0
i

(22a)

rn+1,m← rn+1,m−1 −
(∇p

ρ

)n,m−1

i

∆t2

2
(22b)

σ∗,n+1,m
i ← rn+1,m (22c)

where m is the number of an iteration step and σ∗,n+1,m
i is obtained from Eq.

(7) with updated particle positions.

2.1.2 Velocity-divergence-free condition

An intermediate velocity at the full time step v∗,n+1 is obtained by

v∗,n+1
i = v

∗,n+1/2
i + fi (r

n,vn)
∆t

2
. (23)

The velocity at the full time step vn+1 is obtained by

vn+1
i = v∗,n+1

i −
(∇p

ρ

)n

i

∆t

2
. (24)

To enforce the velocity-divergence-free condition at the new time step, the
divergence of Eq. (24) is taken, and by ∇i · vn+1 = 0 one obtains the required
pressure distribution from

∆t

2
∇ ·

(∇p

ρ

)n

i

= ∇i · v∗,n+1. (25)
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We make the following observations:

• The viscous forces and surface forces are always calculated by Eq. (23) at the
corrected full time step particle position and velocity, the divergence errors
introduced by the discretizations of these forces are therefore minimized.

• In practice, the density correction of Eq. (22) is only performed at those
time steps for which the maximum density error for at least one particle is
larger than a certain threshold. As the density errors after a single time step
are small, the density correction usually is rarely invoked and the increase
of computational expenses is rather low. Typically, the number of iteration
decreases if larger density error is permitted, or if the particle resolution is
carried increased. Our experience suggests that the iteration count is less
than O(10) if the permitted maximum density error is 1% or 0.5%.

• As shown in the next section, the discretization operators and linear-system
solvers involved in enforcing the density and velocity constraints, Eqs. (20)
and (25), are the same. The use of a density constraint in addition to the
velocity constraint introduces only a minor coding overhead as compared to
previous approaches.

2.1.3 A multi-phase projection formulation

Since velocity, pressure and viscous forces are continuous even for a discon-
tinuous density ∇p

ρ
has to be continuous owning to Eqs. (20) and (25). If ρ

is discontinuous ∇p is also discontinuous. For a single-phase incompressible

flow with density ρ the inter-particle-averaged directional derivative
(∇p

ρ

)
ij

is

approximated by Eq. (11) as

(∇p

ρ

)

ij

=
pij

ρrij

eij (26)

where pij = pi−pj. If particle i and j belong to different phases with a density
discontinuity one can assume that the phase interface is located at the center
m between particle i and j, and that the discontinuity is on a plane normal

to the inter-particle vector rij. To ensure the continuity of
(∇p

ρ

)
ij

and of the

pressure across the interface we require

pim

ρirim

eim =
pmj

ρjrmj

emj (27)

where rim = rmj = 1
2
rij, eim = emj = eij. Note that pij = pim + pmj the

inter-particle-averaged
(∇p

ρ

)
ij

at the phase interface is

(∇p

ρ

)

ij

=
2

rij

pij

ρi + ρj

eij, (28)
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which gives the inter-particle pressure

pm =
ρipj + ρjpi

ρi + ρj

. (29)

According to Eq. (12) the Poisson operators in Eqs. (20) and (25) can be
discretized as

∇ ·
(∇p

ρ

)

i

= 2σi

∑

j

Aij

rij

pij

ρi + ρj

. (30)

The resulting discretization for Eq. (20) can be written as

∑

j

Aij

rij

pij

ρi + ρj

=
1

2

σ0
i − σ∗i
σ0

i σ
∗
i

. (31)

The right-hand side of Eq. (25) is discretized as

∇i · v∗ = σi

∑

j

Aijv∗ij · eij. (32)

For single-phase flow one can define the inter-particle average velocity v∗ij
by Eq. (10). If particle i and j belong to different phases with a viscosity
discontinuity, the inter-particle-averaged velocity is given by

vm =
ηivi + ηjvj

ηi + ηj

, (33)

in which ηi and ηj are viscosities for the two particles, to ensure continuity of
the viscous force [?]. Hence, the resulting discretization for Eq. (25) can be
written as

∑

j

Aij

rij

pij

ρi + ρj

=
1

2

∑

j

Aij

(
ηivi + ηjvj

ηi + ηj

)
· eij. (34)

According to Eq. (??), one can discretize the pressure gradient as

(∇p

ρ

)

i

=
1

mi

∑

j

Aij
ρipj + ρjpi

ρi + ρj

eij. (35)

Note that the left-hand-side of Eqs. (??) and (??) have the same expressions
and define a symmetric linear system for periodic or von Neumann boundary
conditions [?]. Therefore, highly-efficient solvers, such as the preconditioned
conjugate gradient method, can be implemented in a straightforward way.
In Cummins & Rudman [?] and Shao & Lo [?] the projection operator is
symmetric for single-phase flows but not for flows with variable density. Note
that, as the projection operator involves all neighboring particles (for example
about 21 particles for a quartic spline smoothing kernel and about 29 particles
for a quintic spline smoothing kernel) in the SPH method, the band width
of the coefficient matrix is much wider than that of a moderate-order finite
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difference method. Therefore, the same elliptic solver requires considerably
more operations for an SPH method than for such a finite difference method.

2.1.4 Reference pressure

When Eqs. (??) and (??) are solved with zero initial values under a von Neu-
mann boundary condition negative pressure may occur in some region of the
computational domain. It is well known that a negative pressure may cause
stability problems in SPH. To overcome this difficulty a constant positive ref-
erence pressure is superimposed onto the computed pressure. Following Morris
et al. [?] and Hu & Adams [?], a physically reasonable reference pressure pref

can be estimated by considering the balance of forces in the equation of motion
(2). Given a velocity scale V0 and length scale L0, the terms on the right-hand
side should be of comparable magnitude, that is

pref

ρmax

∼ V 2
0 ∼

νmaxV0

L0

∼ gL0 ∼ max

(
αklκkl

c

min(ρk, ρl)

)
, k 6= l (36)

where ρmax and νmax are the maximum density and kinematic viscosity, re-
spectively. αkl and κkl

c are surface tension and typical curvature between phase
k and l, respectively. After a simulation has been run initially at low resolu-
tion and the actual variation in pressure is known, the value of pref can be
changed to ensure a positive pressure p. As the conservative discretization of
pressure gradient, Eq. (9), in SPH method produces residual fluctuation even
for constant pressure, the introduction of a reference pressure leads to small
fluctuations proportional to the reference pressure magnitude. Therefore, one
should choose pref as small as possible for better accuracy.

2.2 Time step criteria

For stability several time-step criteria [?] must be satisfied, including a CFL
condition

∆t ≤ 0.25
h

|U |max

, (37)

where |U |max is the maximum velocity in the flow, a viscous-diffusion condition

∆t ≤ 0.25
h2

νmax

, (38)

where νmax are the maximum kinematic viscosity, and surface tension condi-
tion [?] [?]

∆t ≤ 0.25 min

(
min(ρk, ρl)h

3

2παkl

)1/2

, k 6= l. (39)
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As the CFL time-step condition for weakly compressible SPH is

∆t ≤ 0.25
h

cmax + |U |max

(40)

where cmax ≥ 10|U |max is the maximum artificial sound speed, it is compu-
tationally less efficient than the incompressible SPH when the flow evolution
is not dominated by the viscous force or the surface tension. If the flow is
viscosity or surface-tension dominanted, the efficiency of incompressible SPH
can be further increased by a multi-time step technique, in which the viscous
force and the surface tension calculated, by Eqs. (16) and (23), are updated
with time steps according to conditions (??) and (??) whereas the pressure
projection is performed with time steps according to condition (??).

As the error introduced by the reference pressure may cause a stability prob-
lem, in the present method also a global time step criterion needs to be intro-
duced

∆t ≤ 0.25
h

cref + |U |max

, (41)

where cref is the artificial reference sound speed defined by pref = ρminc
2
ref .

From Eqs. (??) and (??), it can be found that for a single-phase flow or flows
with moderate density ratios cref is of the order of |U |max. Then the new time
step criterion only slightly decreases the time step size. However, for large
density ratios the time step limit by Eq. (??) is dominant. Whenever the
resulting time step size is close to that of a weakly compressible SPH method,
the incompressible SPH is computationally less efficient since enforcing the
incompressible conditions causes computational overhead.

3 Numerical examples

The following two-dimensional numerical examples are provided to validate
the proposed incompressible multi-phase SPH method. For all cases a quintic
spline kernel [?] is used. A constant smoothing length, which is kept equal to
the initial distance between the neighboring particles, is used for all the test
cases. As elliptic solver a diagonal or SSOR preconditioned conjugate gradient
method is used. If not mentioned otherwise, the permitted maximum density
error is 1%, and no-slip wall boundary conditions are implemented following
the approach of Cummins & Rudman [?].
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3.1 Two-dimensional Taylor-Green flow

The two-dimensional viscous Taylor-Green flow is a periodic array of vortices,
where the velocity

u(x, y, t) = −Uebt cos(2πx) sin(2πy)

v(x, y, t) = Uebt sin(2πx) cos(2πy)
(42)

is an exact solution of the incompressible Navier-Stokes equation. b = −8π2

Re

is the decay rate of velocity field. We consider a case with Re = 100. The
computation is performed on a domain 0 < x < 1 and 0 < y < 1 with
periodic boundary conditions in both directions. The initial particle velocity
is assigned according to Eq. (??) by setting t = 0 and U = 1. In order to study
the convergence properties the calculation is carried out with 900, 3600, 14400
particles, respectively. Two initial particle configurations are considered: one
is starting from regular lattice positions; the other is starting from previously
stored particle position (relaxed configuration). The following discussion is
based on results calculated from the latter, while the results calculated from
lattice configurations are used to study the influence of initial particle position.

Figure ?? shows calculated positions of particles and vorticity profile, respec-
tively, at t = 1 with 3600 particles. It can be observed that a uniform parti-
cle distribution without clustering is produced. The current SPH simulation
recovers the theoretical solution quite well with somewhat larger errors in re-
gions close to the centers of vortex cells. Figure ??a shows the evolution of
the maximum velocity of the flow calculated with 900 particles. Compared
to the analytical solution the current method predicts the decay process very
accurately. When the same case is run from an initial lattice configuration the
predicted decay rate is slight larger (see Fig. ??a for the line denoted as A).
However, for both cases the difference to the analytical solution is small. At

time t = Tmax, where UTmax
max = U

50
, the relative error

∣∣∣Uex
max−USPH

max

Uex
max

∣∣∣, where U ex
max

denotes the maximum velocity of the exact solution and USPH
max that of the

simulation, reaches at most 2% which is even smaller than the 4% obtained
by starting from a relaxed particle configuration. Note that with only about
1/10 the number of particles the accuracy of the current simulation is compa-
rable with that of the re-meshing SPH method [?] (see their Fig. 3), in which
the errors caused by particle disorder are reduced by re-sampling the SPH
particles at every time step.

If the particle density is not constrained with Eq. (22), as shown in Fig. ??a
(the line denoted as B) the error increases considerably. Furthermore, if the
particle density is not constrained and the computation starts from a lattice
configuration, the errors increase further (see Fig. ??a for the line denoted as
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C). Another difficulty encountered for an unconstrained solution is that the
density error may accumulate if a strong vortical flow evolves in the solution
[?]. As shown in Fig. ??b, the unconstrained solution has a relative density
error close to 4% while the error is 1% for the constrained solution. On the
other hand, the relative density error for the unconstrained solution apparently
strongly depends on the initial particle configuration. As shown in Fig. ??b,
the relative errors can reach more than 20% when starting from the lattice
configuration.

For convergence analysis, we calculate the relative error of the computed max-
imum velocity up to time Tmax shown in Fig. ??a for the solution with 900,
3600 and 14400 particles. The L∞ errors are obtained by

L∞ = max

(∣∣∣∣∣
U ex

max − USPH
max

U ex
max

∣∣∣∣∣

)
. (43)

It is found that the convergence rate of the L∞ error is about first order. The
calculated velocity profiles in x direction at two positions, y = 0.3 and y = 0.5,
with different resolutions are shown in Fig. ?? which indicate an about first
order convergence rate for the peak velocities.

3.2 Capillary wave

We consider two problems of liquid-droplet oscillation under the action of cap-
illary forces. The first problem, taken from Morris [?] and Hu & Adams [?], is
a droplet oscillating in a liquid phase with the same density. The second prob-
lem, taken from Wu et al. [?], is a droplet oscillating in a liquid environment
with different density.

For the first problem, the computation is performed on a domain 0 < x < 1
and 0 < y < 1 using fluids of the same density ρd = ρl = 1 and equal viscosity
η = 0.05. A droplet of radius R = 0.1875 is placed at the domain center
and the surface-tension coefficient is α = 1. To all particles a divergence-free
initial velocity vx = V0

x
r0

(1 − y2

r0r
) exp(− r

r0
) and vy = V0

y
r0

(1 − x2

r0r
) exp(− r

r0
)

is assigned, where V0 = 10, r0 = 0.05, and r is the distance from the position
(x, y) to the droplet center. In order to study the convergence properties the
calculation is carried out with 900, 3600, 14400 particles, respectively.

Figure ?? shows the positions of the droplet particles at 4 selected time in-
stants with 14400 particles. It is observed that particle distribution is in quite
good agreement with the results of Hu & Adams [?] (their Fig. 4). Figure ??
compares the variation of the center-of-mass position and velocity of the up-
per left 1/4 part of the droplet with different resolutions. The computed first
period at the highest resolution is about 0.35. Compared with the results in
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Hu & Adams [?], we find that while the computed periods differ by only 3%
the noise caused by artificial sound waves in the weakly compressible SPH is
eliminated by the present method. First order convergence rates are obtained
for both mass center position and velocity by calculating the relative error be-
tween different resolutions. Again, the accuracy is quite close that of weakly
compressible SPH [?] while numerical artifacts are removed.

For the second problem, the computation is performed on a domain 0 < x < 12
and 0 < y < 8, and an elliptic droplet defined by x2/4 + y2 = 1 is placed at
the domain center and the surface-tension coefficient is α = 1. The densities
inside and outside of the drop are 1.5 and 0.5, respectively, and the viscosity is
1×10−2. Initially, the particle velocity is set to zero. The problem is simulated
with 3456 particles.

Figure ?? shows the positions of the droplet particles at 4 selected time in-
stants. It is observed that the interface deformation is in quite good agreement
with the results of Wu et al. [?] obtained by a higher resolution finite-element
calculation (their Fig. 4). The corresponding time history of the center-of-mass
position in x direction of the upper left 1/4 part and the total kinetic energy
of the drop are shown in Fig. ??. The oscillation period is estimated (based
on the first two cycles) to be 7.38 which is, again, close to the result of 7.6 in
Wu et al. [?].

3.3 Drop deformation in shear flow

We consider a circular drop with initial radius Ro = 0.02 in a Couette flow with
top and bottom wall velocity of ±v, respectively. The periodic computational
domain is the region 0 < x < 8Ro and 0 < y < 8Ro in which the drop is
centered at (4Ro, 4Ro). The calculation is carried out with 9216 particles. The
drop deforms with the flow until a balance between viscous stresses and surface
tension is reached. It is known that the shape of sheared drop is governed by
two nondimensional parameters, i.e. the viscosity ratio λ = ηd/ηc, where ηd

and ηc are, respectively, the viscosities of the drop and the shearing fluid, and
the capillary number Ca = 0.25ηdv/α. According to [?], a linear deformation
is predicted theoretically under the condition of small capillary number, and
the deformation parameter is given by

D = Ca
19λ + 16

16λ + 16
(44)

in which D = (L − B)/(L + B), L and B are the drop’s half-length and
half-width, respectively.

Figure ??a shows the final equilibrium stage when Ca = 0.15 and λ = 1. Note
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that the shape of the deformed drop agrees with the weakly SPH simulation
result [?] quite well while the present method produces a notably uniform par-
ticle distribution. The measured D is about 0.153 which is close to the result
obtained by Zhou & Pozrikidis [?] and Hu & Adams [?]. Figure ??b shows a
comparison of the results of [?][?] and the current computations for several
capillary numbers. To study the dependence on the viscosity ratio, we simu-
late the drop deformation for Ca = 0.15 with different viscosity ratios, ranging
from λ = 0.01 to 100. In Fig. ??a can be seen that the drop deformation in-
creases with λ. Note that predicted deformation variations are less than that
obtained from [?]. The present results are in accordance with the theoretical
prediction by Eq. (??) which implies that D only increases slightly with λ.
The drop deformation in the non-linear regime is also examined. Figure ??b
shows the deformed drop for Ca = 1.5 and Re = 0.25ρR0v/ηc = 3. The drop
does not break up even after being stretched to form a strip with the length
about twice that of the domain width. Note that the strip center is thicker
than the two necks, which is in agreement with the three-lobed mode for drop
deformation under conditions of large capillary number but small Reynolds
number [?].

3.4 Rayleigh-Taylor instability

We consider a Rayleigh-Taylor instability problem which has been studied
by Cummins & Rudman [?] with three different methods: finite differences,
weakly compressible SPH and incompressible SPH. The computation is per-
formed on a domain 0 < x < 1 and 0 < y < 2. Initially, the particles are placed
on regular lattice positions. In the lower part of the domain are particles with
density ρl = 1.0. In the upper domain, defined by y > 1 − 0.15 sin(2πx), are
particles with density ρu = 1.8. The Reynolds number is set to Re = 420 and
the Froude number is set to Fr = 1. No surface tension is included. The initial
particle velocity is set to zero, and the permitted maximum density error is
0.5%. The calculation is carried out with 7200 particles, which is a similar
resolution as that in [?].

The calculated positions of particles at time t = 1, t = 3 and t = 5 are shown in
Fig. ??. Note that the interface evolves into an asymmetric shape because the
spike falls (heavy into light fluid) faster than the bubble rises (light into heavy
fluid). The general features shows a good agreement with the results in [?] (see
their Figs. 10 and 11). However, the present results predict a much stronger
roll-up of the plumes than their results obtained by incompressible SPH and
weakly compressible SPH (comparing the present Fig. ??b, c to their Figs. 10b,
c and Figs. 11b, c). It is quite interesting that the present results indicate even
slightly stronger roll-up than that obtained by the finite-difference simulation
at similar resolution (comparing to their Figs. 10a and 11a). According to
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Hoover [?], this may be expected since the present method treats density dis-
continuities directly, and furthermore the non-smeared density discontinuity
strongly increases the baroclinic vorticity production and hence introduces a
considerably larger roll-up effect. Compared to finite difference methods which
also smoothen the density discontinuities within a narrow band of several grid
points, the present SPH algorithm represents the interface in an even sharper
way by recovering an exact discontinuity. Another important property of the
present results is that there is no noticeable ”particle clumping” problem (see
Fig. 13 in [?]), in which the spurious pressure (artificial surface tension) pre-
vents the formation of high curvature and produces a gap at the interface
[?]. These interface properties of the present method imply a considerably
smaller interface dissipation which explains the quickly developing secondary
instabilities as shown in Fig. ??c.

4 Concluding remarks

We have developed an incompressible multi-phase SPH method in which both
the zero-density-variation and velocity-divergence-free constraints of the in-
compressiblility condition are enforced by a fractional time-step integration
algorithm. A new multi-phase projection formulation in which the gradient
and divergence operators are not restricted to a differentiable density and
viscosity field is developed to obtain non-smeared density and viscosity dis-
continities. Numerical examples are investigated and compared with analytic
solutions and previous results. The results show that the method can be reli-
ably applied to incompressible single-phase and multi-phase flows within and
beyond the low Reynolds number region. In addition, since very similar ap-
proaches are employed to treat density and divergence constraints, the present
method increases coding complexity only slightly.

References

[1] O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, L. Mayer,
A. Gawryszczak, A. Kravtsov, J. Monaghan, Å. Nordlund, F. Pearce, V. Quilis,
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Fig. 1. Taylor-Green problem at t = 1 with 3600 particles: (a) positions of particles,
(b) simulated vorticity profile (solid line) and analytical solution (dash line)
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Fig. 2. Taylor-Green problem with 900 particles: (a) decay of the maximum velocity,
(b) particle density profile at t = 1.
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Fig. 5. Droplet oscillation with ρd/ρl = 1: convergence test.
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Fig. 6. Droplet oscillation with ρd/ρl = 3: positions of particles at 4 selected time
instants.
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Fig. 7. Droplet oscillation with ρd/ρl = 3: (a) mass center position, in x direction,
of the upper left 1/4 part; (b) total kinetic energy of the drop.

Fig. 8. Drop deformation in a shear flow: (a) particle positions of the drop (black
dots) and the shearing fluid (open circles) when Ca = 0.15 and λ = 1, (b) relation
between the deformation parameter and capillary number.
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Fig. 9. Drop deformation in a shear flow: (a) drop deformation with different vis-
cosity ratios, (b) deformation of drop with Ca = 1.5 and Re = 3.
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Fig. 10. Rayleigh-Taylor instability: position of particles at 3 selected time instants.
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