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Modeling full-Mach-range cavitating flow with
sharp interface model

By X.Y. Huf, N. A. Adamst, E. Johnsen AND G. Iaccarino

In this work, two extensiosn of our previous work are proposed for the simulation of
full-Mach-range cavitating flow with sharp interface model. These extensions are: a new
interface-interaction solver, which includes a new HLLC Riemann solver suitable for both
strong and weak interface interaction with general EOS, and a simple phase-change model
which assumes that the phase change is in thermal non-equilibrium, and is much slower
than the interaction described by the Riemann problem. Several numerical examples in
one dimension are studied; the results suggest that the present method exhibits good
robustness and accuracy.

1. Introduction

Cavitating flow is still difficult for modern computational fluid dynamics. Generally,
the difficulty is strongly related with the numerical methods for the material interface.
First, the numerical method should be able to resolve the interface accurately and solve
the interface interaction between the heavy and stiff liquid medium and the light and
soft gaseous medium. Second, the numerical method should be able to treat the interface
interaction between different Mach-number regions. Specifically, the flow in the liquid
region is usually a low-Mach-number flow because the liquid is only weakly compressible,
but the flow on the other side of the interface, i.e., in the air or vapor region, is typically
transonic since the gaseous medium is compressible, especially during the bubble collapse.
Furthermore, when the homogeneous model for the vapor/air/liquid mixture is used,
the associated flow is typically supersonic because of the highly compressible property
of the mixture. Third, the numerical method should be able to take into account the
mass, momentum and energy exchange at the interface associated with phase-change
phenomena, such as evaporation and condensation. Finally, the numerical method should
be able to handle nucleation, in which new material interface is created in liquid bulk.

Recently, we presented a conservative interface method for both multi-fluid and com-
plex boundary problems, in which the standard finite-volume scheme on Cartesian grid
is modified by considering computational cells being cut by the interface. While the dis-
cretized governing equations are updated conservatively, the method solves the difficulty
of conservation for the front-tracking method and treats topological change naturally
by combining the interface description and geometric operations with a level-set tech-
nique. As the interface condition is obtained by solving the Riemann problem, it is
capable of solving shock interface interactions stably and accurately. This method has
been successfully used for interfacial flows including liquid/gas interaction (Hu et al.
2006). However, in order to simulate cavitating flow, there are still several important
issues to be addressed for the interface-interaction solver. First, for accuracy and robust-
ness, an iterative two-rarefaction-wave approximate Riemann solver is used. To avoid the
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difficulties of no-convergence and multiple solutions, the iterative root-finding algorithm
may become quite complicated and require more computational overhead, especially for
fluids with general equation of state (EOS). Second, while the current Riemann solver
is accurate and robust for strong interaction with shock, it, just like other approximate
Riemann solvers, has difficulty with weak interaction (low-Mach-number problems) when
the interface velocity is small compared to the sound speed (Guillard & Murrone 2004).
Furthermore, the interface-interaction solver has not extended for phase-change and nu-
cleation phenomena.

Here, we propose two extensions of our previous work on the simulation of full-Mach-
range cavitating flow with sharp interface model. Specifically, we provide a new interface-
interaction solver, which solves the Riemann problem in a non-iterative, one-step fashion,
is suitable for both strong and weak interface interaction with general EOS, and takes into
account the effects of phase-change phenomena such as evaporation and condensation.

2. Method

Assuming the fluid is inviscid and compressible, the governing equation of the flow can
be written as a system of conservation laws:
87U—&-V~F:O on (2.1)
ot
where U is the density of the conserved quantities of mass, momentum and total energy,
and F represents the corresponding flux functions. When a material interface Z(t) sepa-
rates the domain €2 into two parts, the fluid states in the left and the right sub-domains
Q;(t) and Q,.(t) are described by different EOS. If no phase change is considered, the evo-
lution of the interface, and the exchange of the momentum and energy for hydrodynamic
interaction across the interface, are determined by solving a 1-D, two-material Riemann
problem,

R(U,U,) =0 onZ(t), (2.2)

where U; and U, represent the left and right states in the normal direction (Hu et al.
2006). Neglecting the contribution in the tangential direction, the 1-D governing equation
in the normal direction can be written in the form as

where U = (p, pg, E)T and F(U) = (pu, p+pg?, u(E+p))T together with E = pe+ 1 pq?,
where p, p and e represent the density, pressure and specific internal energy, respec-
tively, and g and F represent the velocity normal to the interface and the total energy,
respectively. We assume a general EOS with the form

p(p.e) =T(p)pe + f(p) (2.4)

in which T" is the Griineisen coefficient. Equation (2.4) generalizes an adequate approx-
imation to a wide variety of materials of interest. This includes materials such as ideal
gases, stiff gases, explosives and condensed materials under high pressure. Note that there
are usually different expressions of p(p, €) across the interface. The sound speed ¢ is given
by

o _Op  pOp
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FIGURE 1. Simplified Riemann fan with two intermediate states.

2.1. A new HLLC solver

The Harten, Lax, and van Leer with contact restoration (HLLC) Riemann problem
(Harten et al. 1983; Toro et al. 1994) approximates the Riemann fan, as shown in Fig. 1,
with two waves having the smallest and largest velocity, denoted as b; and b;, respectively,
and a middle or contact wave whose speed is denoted as b;. There are two average inter-
mediate states, (p;,q;,p;), (P, ¢;,p)), separated by the contact wave denoted as b,. By
assuming that the contact wave and intermediate state has relation b, = ¢ = q} = ¢*
and p} = p! = p*, the integration of equation (2.3) over the time-space rectangle ABCD,
as shown in Fig. 1, gives

prbr — pibi + prqi — prgr = pi (¢" — bi) + py(br — q7) (2.6)
orar(br — ar) + pra(q — b)) +pr — r = pfa; (" — bi) + prai(br — q*)  (2.7)
E b, — Eib + (El +pl)ql - (Er +pr)qr = El*(q* - bl) + E:(bT - q*)- (2-8)

Application of Egs. (2.6) and (2.7) results in

« _ Prar(br —aqr) + pra(q — b)) + pr — pr
_ . (2.9)
pr(br — ) + pi(q — br)

Note that Eq. (2.9) has the same form as that obtained by Toro et al. (1994). Since there
is no flux of mass across the contact wave, as shown in Fig. 1, the integrations of density
over the time-space region OMCD and OABM gives the intermediate densities

* blftﬂ * QT*br
P Pl q* — bl7 Pr pr q*

r

(2.10)

Other than using the jump relations (two-shock approximation) as in Toro et al. (1994),
the present solver obtains the interface pressure by solving Eq. (2.8) with the EOSs given
by Eq. (2.4). The result is

pt = . e)* + | « = +f 2.11
BTi(pf) + al'v(p) (pe) Lu(py)  Tolpy) (2.11)
where
g =D b —q" B
a_b,’,—bl, 6_br_bl7 a+/6_17
1 1
(pe)* = b [Erbr = Eiby + (Ey + pa = (Er + pr)ar] = 5 (anf + Bp7) 7.
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At the weak interaction (or low-Mach number) limit, one has the approximations ¢, —b; ~

¢ —b=ca>|al, br—q¢ = b —¢* = ¢, > |g| and max(|gn |, |gr]) < min(c, ¢,). From
Eq. (2.11), one can easily find the interface pressure at the low-Mach number limit is
o, = — Lp)Te(or)

M BLi(pp) + ol (py)

in which the acoustic pressure wave vanishes. For the HLLC solver of Toro et al. (1994),
the interface pressure is given by

P =pla—b) (g —q")+p- (2.13)

At the weak interaction (or low-Mach number) limit, the interface pressure given by Eq.
(2.13) is

(p1 + pr), (2.12)

Py, = picila — q°) +pu. (2.14)
Equation (2.14), like several other linearized Riemann solvers, is the same as the first-
order approximation of accurate Riemann solver (Guillard & Murrone 2004), which sug-
gests that even if the initial data are close to a constant density incompressible field, the
field computed by Eq. (2.13) contains, after one time step, acoustic pressure waves that
are much larger than the pressure fluctuations due to the weak interaction. This is not
physical and may introduce numerical instability.

In this paper, the HLLC solver is proposed to solve the two-material Riemann problem
given by Eq. (2.2), i.e., the interface condition is obtained by the contact wave velocity
u* with Eq. (2.9) and the intermediate pressure p* with Eq. (2.11). With the interface
condition, according to Hu et al. (2006), the rates of momentum and energy exchanges
at interface without phase change can be obtained by

XP(AT) = p*AIN;, XP(AT)=p*¢*AL, (2.15)

where N is the normal direction of the interface and AZ is the interface area patch in
a computational cell.
It is suggested that the wave speeds, b; and b,., be estimate by

by = minfu; — ¢, § — ¢, by = max[§+ ¢, u, + ¢, (2.16)

where ¢ is the sound speed, and the tilde ~represents the Roe-averaged values (Einfeldt
et al. 1991, Batten et al. 1997). For the two-fluid problem with general EOSs, the Roe-
averaged sound speed and velocity is obtained by a generalized formulation (Hu et al.
2008):

_ _ VPG \/Prgr
p=/pipr, G=ulg)=r—r—"— g=4¢q, ¥ (2.17)
v Pl + \/ Pr

and

Z =0+ f(p) (2.18)

()= () (Gem)

2.2. Phase-change model

with

To model the phase change at the interface, we apply the thermal non-equilibrium as-
sumption (Fujikawa & Akamatsu 1980), by which, during the phase-change process, while
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the pressure is equilibrium at the vapor pressure, the temperature has a discontinuity at
the phase interface. The expression for the rate of evaporation and condensation i has

the form (Schrage 1953):
. (0% ps(T'lz) Do )
= - . 2.19
"= o (v 219

Here, « is the accommodation coefficient for evaporation or condensation (assumed con-
stant), equal to the ratio of vapor molecules sticking to the phase interface to those
impinging on it; T, and T}; are the temperatures of the vapor and the liquid at the phase
interface, respectively; R, is the gas constant of the vapor; p, is the actual vapor pres-
sure at the phase interface, and p,(7};) is the equilibrium (saturation) vapor pressure at
temperature Tj; and is obtained from the Clausius-Clapeyron equation

L, (1 1
ps(Tii) = po exp L%v <T0 - Tn)] , (2.20)

where L, is the latent heat of vaporization, and py and Ty are given by a reference
saturation state. With Eq. (2.19), the phase-change-induced interface velocity is

Ag* = ﬁ7

Pli

where p;; is the density of liquid at the phase interface. In a cavitating flow, Ag* usually
is small and much smaller than the advection velocity of the interface (Brennen 1995),
which suggests that the change rates of pressure and temperature caused by the latent
heat are insignificant. Therefore, it is straightforward to assume that the phase change is
much slower than the hydrodynamic interface interaction. If the effects of heat conduction
in the bulk are also neglected, one can simply obtain p,,, pi;, 1;; and T, from the previous
interface-interaction solver

Po=Dp" pu= p?iv T = T(P*vﬂfi), T, = T(p*vp;)v (2'22)

in which the superscript * represents intermediate states in Eqs. (2.10) and (2.11).
Similar to Eq. (2.15), the rates of mass, momentum and energy exchanges at the
interface associated with phase change can be obtained by

X™(AT) = AL, XP'(AT) =m[v*|AZ, XP(AL) = (m[E*] + p*Aq*)AL, (2.23)

(2.21)

where [-] gives the interfacial state which is chosen from the liquid for evaporation and
the vapor for condensation. Note that the energy exchange usually is not important for
water because the introduced temperature change is negligible.

3. Numerical examples

The following 1-D numerical examples are provided to illustrate the potential of the
present HLLC solver. For all test cases, we use a conservative interface method for multi-
fluid problems (Hu et al. 2006) in which one-phase calculations are carried out with a
fifth-order WENO-LLF (Jiang & Shu 1996) and a third-order TVD Runge-Kutta scheme
(Shu & Osher 1988). To decrease the over-dissipation in smooth regions caused by the
WENO limiter, a technique of Borges et al. (2008) is used. We shall denote "TR” for
results obtained by the two-rarefaction-wave Riemann solver (Hu & Khoo 2004), "HLLC”
by the original HLLC solver, and "M-HLLC” by the present HLLC solver. The number
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FIGURE 2. Shock tube problems: Case I-A (a) and (b); Case I-B (c) and (d).

of grid points is 200 and the referenced exact solution, if given, is sampled on 1000 grid
points. All the computations are carried out with the CFL number of 0.6.

3.1. Shock tube problems (I)

Nest we consider two shock tube problems of two gases modeled by ideal gas EOS,
p = (v — 1)pe, where v is constant, with very different shock strengths. For Case I-A,
which is taken from Fedkiw et al. (1999), Hu & Khoo (2004) and Hu et al. (2006), the
shock is moderately strong. The initial conditions are

(1,0,1,1.4) if0<x<05
(psu,p,7y) = : (3.1)
(0.125,0,0.1,1.667) if 1>z > 0.5

and the final time is ¢ = 0.15. For Case I-B, the initial conditions are

(1,0,1.001,1.4) if0<z <06

(p,u,p,y) = (3.2)
(30,0,1.0,1.667) if 1>z > 0.6

in which the shock is weak but there is large density ratio at the interface. The final time
ist=0.3.

Figure 2 gives the computed velocity, density or pressure profiles. There are good
agreements with exact solutions, except that, for Case I-B, the original HLLC solver

predicts much larger errors than the two-rarefaction approximation solver and the present
HLLC solver.
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FIGURE 3. Interaction with water: Case II-A (a) and (b); Case II-B (c) and (d).

3.2. Interaction with water (II)
We consider two problems with gas-water interaction, in which the gas is modeled with
¥
ideal-gas EOS and water is modeled with Tait’s EOS, p = B (p%) — B + A, where

~v = 7.15 and the non-dimensional parameters are B = 3310, A = 1 and pp = 1 with
respect to the property of water at 1 atmosphere and length scale 1 m. For Case II-A,
which is taken from Hu & Khoo (2004), the high-pressure gas expands slowly compared
to the transmitted and reflected wavefront speeds. The initial conditions are given as

(0.01,0,1000,2) if 0 <z < 0.5

(psu,p,7y) = (3.3)
(1,0,1,7.15) if1>2>05

and the final time is ¢ = 0.008. Case II-B is a weak impact problem, in which a gas
impacts on water with very low speed. The initial condition is

(0.01,0.01,1,1.4) if 0 <z <0.2

(p,u,p,y) = (3.4)
(1.0,0,1,7.15)  if 1>2>0.2

and the final time is ¢t = 0.004.

Figure 3 gives the computed velocity, density or pressure profiles. Again, as in Case
I-B, the TR and M-HLLC solvers predict a physically correct solution for Case II-B, but
the original HLLC solver obtains an incorrect pressure profile and velocity profile with
larger errors. It is also noted that the exact Riemann solver used for reference solutions
suffers numerical difficulty for Case II-B. It fails to obtain physically correct post-shock
particle velocity Us and shock velocity Dy because the water density is almost unchanged.
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FIGURE 4. Explosion and high-speed impact: Case II1I-A (a) and (b); Case III-B (c¢) and (d).

Therefore, physically correct and accurate approximations, Us = 0 and Dg = ¢, where
cp is the initial sound speed of water, are given for state prediction.

3.3. Explosive driving and high-speed impact (I11)

Two problems related to explosive driving and high-speed impact are considered next.
The explosive is modeled with JWL EOS,

—Ripo —Rap,
p:AOexp( 1p)<1_ P )+Boexp< 2p><1_ p )+F0p(e+eo),
p Ripo p Rapo

where Ay, By, R1, Rs, po, eo and I'y are constant coefficients. The impacting materials
are modeled by Mie-Griineisen EOS,

p(p,€) = pres +T(p)ple — erey),

where Pref = POC(2)77/(1 - 577)27 n= 1 —PO/P, F(P) = FOPO/p and Eref = 0~5pref77/p0~ Here
Pos Co, S, I'g are constant coefficients. These EOSs are special cases of the general EOS
given by Eq. (2.4). Because the TR solver is complicated for these types of EOS, it is not
used. For similar reason, the "exact” reference solution is computed with high-resolution
results on 1600 points. Case ITI-A, which is taken from Shyue (2001), involves the interac-
tion between the detonation products of TNT explosive with a copper plate. The EOS co-
efficients of the detonation products and the copper plate are (I, pg, Ao, Bo, R1, Ra, ep) =
(0.25,1.84,854.5,20.5,4.6,1.35,8.15) and (T'g, po, co, s) = (1.96,8.924,3.91,1.51), respec-
tively. Here the non-dimensional references are 1000 kg/m? and 1 GPa. The initial con-
dition is
(2.48537,0.0,37) if 0 <z < 0.5
(p,u,p) = (3:5)
(8.924,0,0) ifl1>2>0.5
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FIGURE 5. Vapor-water interaction: (a) computational domain; (b) evolution of the phase
interface with different a.

and the final time is ¢ = 0.06. Case III-B, which is taken from Shyue (2001), is a model
shock-contact problem that involves the interaction of a shock wave in molybdenum
and an encapsulated MORB (Mid-Ocean Ridge Basalt) liquid. The EOS coefficients of
molybdenum and MORB are (T'g, po, co, s) = (2.56,9.961,4.77,1.43) and (T'y, po, o, ) =
(1.18,2.66,2.1,1.68), respectively. The initial condition is

(11.042,0.543,30) if 0 < z < 0.6
(2.66,0,0) if1>2> 0.6

and the final time is t = 0.12.

Figure 4 gives the computed velocity, density profiles. Good agreement can be observed
between the numerical and exact solutions. There is no notable difference between the
results of the original and the present HLLC solvers. Note that the present methods
obtain results with considerably better accuracy than those in Shyue (2001), especially
for the smooth-solution regions.

3.4. Vapor-water interaction (IV)

We consider next problems related to vapor-water interaction. As in Case-II, the vapor
is modeled with ideal-gas EOS and water is modeled with Tait’s EOS. The test problem
is the condensation of over-saturated water vapor in the presence of an acoustic wave.
Initially, as shown in Fig. 5(a) both phases have a length of 2 cm. Vapor is on the left
side and water on the right side, with the phase interface at the origin. Both phases are
at rest and have a common temperature of 293 K at the beginning. The initial vapor
pressure is 93 mbar, whose saturation temperature is 343 K. The water pressure is 193
mbar. The ends of the domain are reflection boundaries.

Figure 5(b) gives the evolution of the phase interface with different accommodation
coefficients: a = 0, 0.075, 0.25, 0.5 and 0.75. One can find that if there is no phase change
(a = 0), the water first expands due to its higher pressure and then shrinks and expands
periodically as the pressure wave propagates back and forth in the liquid. When the phase
change is included in the process, the liquid volume still oscillates, but the oscillation is
superposed upon an expansion due to condensation as the vapor is over-saturated. Figure
5(b) also gives the dependence of the evolution of the interface on the accommodation
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FIGURE 6. Vapor-water interaction: velocity (a) and pressure (b) profiles at ¢ = 1 ms for with
and without phase change.

coefficient. It can be noticed that for large a the expansion slows down due to the faster
consuming of the over-saturated vapor.

Figure 6 plots the velocity and pressure profiles at 1 ms. One can find that the dis-
continuity of velocity in the center gives the mass flux across the phase interface (see
Fig. 6(a)). With phase change considered, as the consuming of the over-saturated vapor,
the pressure of both vapor and water decrease considerably (see Fig. 6(b)). These obser-
vations suggest that phase change plays an important role when deviation from phase
equilibrium is present.

4. Conclusions

We have developed two extensions of our previous work on the simulation of full-
Mach-range cavitating flow with sharp interface model. Specifically, we provide a new
interface-interaction solver which includes a new HLLC Riemann solver and a simple
phase-change model. A number of numerical examples in one dimension are studied. The
obtained results suggest that the present method exhibits good robustness and accuracy.
Further studies will be focused on multi-dimensional tests and possible extensions for the
nucleation process.
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