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Self-diffusion coefficient in smoothed dissipative particle dynamics
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Smoothed dissipative particle dynamics (SDPD) is a novel coarse grained method for the numerical
simulation of complex fluids. It has considerable advantages over more traditional particle-based
methods. In this paper we analyze the self-diffusion coefficient D of a SDPD solvent by using the
strategy proposed by Groot and Warren [J. Chem. Phys. 107, 4423 (1997)]. An analytical expression
for D in terms of the model parameters is developed and verified by numerical simulations. © 2009
American Institute of Physics. [DOI: 10.1063/1.3058437]

Soft matter systems, such as polymer suspensions, poly-
mer melts, colloids, or emulsions, are an extremely active
area of research for both academic and industrial purposes.
The interest in dealing with increasingly complex problems
in the micro- and macroscale has provided a strong stimulus
for the development of a wide class of numerical methods
specifically designed to model complex mesoscopic flow
physics. A straightforward computational tool to study the
transport properties of liquids is molecular dynamics (MD).!
The obvious disadvantage of an atomistic representation of
the liquid is the overwhelming computational cost for prac-
tically relevant length and time scales of macroscopic experi-
ments. For simple configurations extensive studies by MD of
transport properties have been performed, e.g., a self-
diffusion coefficient has been extracted with high accuracy.2
The large scale separation between atomistic and typical
lengths occurring in soft matter systems has triggered the
development of a new class of so-called mesoscopic methods
allowing for simulations on much larger length and time
scales than MD. Lattice gas automata,” lattice Boltzmann
methods,*” and multiparticle collision dynamics6 represent
some popular examples. Among them, dissipative particle
dynamics (DPD) (Ref. 7) is receiving considerable attention.
A DPD fluid is represented as a collection of particles, which
interact through conservative, dissipative, and stochastic
forces. Stochastic forces take into account the thermal fluc-
tuations, which describe diffusive processes at the mesos-
copic scales. The correct hydrodynamics is recovered at
larger scales due to the fact that linear and angular momenta
are locally conserved by the particle interactions. Equilib-
rium and transport properties of DPD systems have been
extensively studied in literature.*™'° Following the introduc-
tion of the method in Ref. 7, the basis of its statistical me-
chanics was established in Ref. 11.

A critical issue in DPD is the determination of the trans-
port coefficients of the simulated liquid. In Refs. 12 and 13
explicit predictions for the viscosity and the self-diffusion
coefficient in terms of the model parameters were given.
However, the validity of these analytical expressions is re-
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stricted to the ideal-gas equation of state and to the limit of
small time step. Furthermore, as found in Ref. 14, the pre-
diction failed to reproduce correctly the diffusion coefficient
for the widely used velocity-Verlet integration scheme. In a
recent work Noguchi and Gompper15 studied the time step
dependence of the viscosity and diffusion coefficient. How-
ever, how to predict self-diffusion accurately in DPD is still
an open question.

A few years ago a generalization of the smoothed par-
ticle hydrodynamics methods (SPH) (Ref. 16) for flow prob-
lems occurring at mesoscopic scales was introduced as
smoothed dissipative particle dynamics (SDPD).'” Despite a
resemblance with DPD, it has been shown that the new
method possesses several improved features: (i) SDPD is
based on a second-order discretization of the Navier—Stokes
equations such that the transport coefficients (i.e., viscosity,
thermal conductivity, etc.) are input parameters; (ii) hydro-
dynamic behavior is obtained at length scales of the same
order of particle dimension and no coarse-graining assump-
tion is needed; (iii) arbitrary expressions for the equation of
state can be adopted and they are not restricted to the specific
form used in DPD;" and (iv) the fluid particles have a speci-
fied physical length and the thermal fluctuations scale cor-
rectly with this size.'®

Concerning the transport properties of SDPD, viscosity
is an input parameter; therefore no kinetic theory or prelimi-
nary computations are necessary to evaluate viscosity. How-
ever, the self-diffusion coefficient D of a fluid particle cannot
be specified a priori and therefore needs to be estimated. It
should be noted that an accurate expression for D in terms of
the model parameters is crucial for the determination of the
Schmidt number Sc of the model liquid. For instance, the
value of Sc affects strongly the nonequilibrium properties of
suspended polymer molecules.'*

The objective of this Communication is the following:
first, we will develop an analytical expression for the self-
diffusion coefficient D in a SDPD liquid and, second, we
will check numerically the accuracy and the robustness of
this prediction over a wide range of the model parameters.
The result allows for a systematic control of the self-
diffusion coefficient and the Schmidt number of the simu-
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lated liquid without the need to perform preliminary compu-
tations.

In the following we briefly review the main SDPD equa-
tions. The discretized isothermal Navier—Stokes equations
(continuity and momentum) for a set of Lagrangian particles
have been given, for example, in Refs. 16 and 19 and they
read
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where u is the dynamic viscosity, m; is the mass of a particle,
W,; is a kernel function, 0;=2;W;; is the inverse of the par-
ticle volume, and e;; and r;; are the normalized vector and
distance from particle i to particle j, respectively. p and p are
related by the equation of state: In this work p=py(p/pg)?
+b is adopted, where p, py, b, and y are model parameters,
which may be chosen such that the local mass density varia-
tion is smaller than a given magnitude. Equations (1) and (2)
represent the deterministic part of the particle dynamics. By
using the general equation for non-equilibrium reversible-
irreversible coupling formalism,”**! thermal fluctuations can
be directly introduced in Egs. (1) and (2) by adding the fol-
lowing terms:'”’ dm;=0 and df’i:EjB,»deijeij, where dVT/ij is
the traceless symmetric part of an independent increment of
a Wiener process and B;; is defined as
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This expression represents the SDPD fluctuation-dissipation
theorem and guarantees that all the energy introduced by the
stochastic kicks on the particles is entirely dissipated by the
viscous terms in Eq. (2)."” Unlike DPD, the tensorial gener-
alization of the Wiener process in dﬁ» allows for a rigorous
identification of the irreversible part of the dynamics as a
second-order accurate SPH discretization of the Navier—
Stokes equations.

Let us present now a derivation of the self-diffusion co-
efficient for the SDPD fluid particles. The following notation
for the particle accelerations will be used:

dv, 1
i Z(FC+FP+FY), dr,=vidr, 4)
dt m; ! ! !

where FI{.C’D’R}=E jFEjC’D’R} are the total conservative, dissipa-
tive, and random force acting on particle i expressed as a
sum of contributions of interactions with all the particles.

According to the derivation given by Groot and Warren
in Ref. 13, we neglect the conservative forces and assume
that all the particles except particle i are at rest. Additionally,
by assuming that the density is uniformly distributed, one
can write the following:

J. Chem. Phys. 130, 021101 (2009)

0.1 1

0.08 1

MSD

0.06 1
0.04 ]

0.02 - Zz 1
Z

0 .02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

time

FIG. 1. Mean square displacement for different values of the viscosity: u
=2200.2, 48.9, 24.7, 16.5, 12.4, 10.0, 8.3, 7.1, and 6.2 (from top to bottom).

dv; 1 1
== F)+ — > FF. (5)
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Using the fact that the dissipative part is linear in the
velocity differences, one can rewrite the equation in a Lange-
vin form as follows:
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In SPH/SDPD the kernel typically takes the form'®

™

W(riph) = %f(#) . (7)

By replacing the summation in the viscous and random
forces with an integration, we obtain

L_8mu [T
2T JO f(s)ds. (8)

The solution of the Langevin equation (6) leads therefore to
the following expression for the diffusion coefficient:

ksT — ph’kyT [ [** -
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Finally, for the quintic spline kernel” used in this work, we
obtain the following Stokes—Einstein-type relation:

_ pl’lszT

. 10
12mu (10)

This represents the main result of this Communication. In
order to verify numerically this expression, the following
simulations are performed: A three-dimensional periodic box
domain is considered. We take kzT=1, box size L=1.25,
mass density p=1, number of particles N=15X15X15
=3375, and dynamic viscosity wu varying between 6 and
2200. As an initial condition a uniform distribution with the
particles placed on a cubic lattice is taken. Particle mass is
m=pL3/N, where h=L/15 is the kernel cutoff radius. With
this choice of input parameters, Eq. (10) simplifies to Du
=1.
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FIG. 2. Diffusion coefficient D plotted against the inverse viscosity 1/u.

The system is advanced in time and the mean square
particle displacement MSD={[r(¢)-r(0)]?) is calculated for
different viscosities. The results are plotted in Fig. 1. We
found that the domain size effects are negligible and do not
affect the results.

The values of the diffusion coefficient for the different
simulations performed are computed by fitting the MSD in
the limiting linear regime and are plotted against the inverse
viscosity in Fig. 2. The best linear approximation to the data
is uD=1.02%0.03, which is in good agreement with the
prediction of Eq. (10) and confirms the validity of the ap-
proximation made by neglecting the conservative terms in
Eq. (5). Simulations were repeated for temperatures kgT
=0.5, 2 with the same results.

As mentioned above, an accurate analytical expression
of D provides an easy way to control the Schmidt number.
This is defined as Sc=v/D, where v=pu/p is the kinematic
viscosity and gives an estimate of the time scale of momen-
tum diffusion with respect to mass diffusion. In a liquid such
as water Sc should be on the order of 103 or larger. With
DPD, Sc does not always agree with the theoretical
predictions14 so that for an unambiguous characterization of
the diffusional properties of the solvent, extensive prelimi-
nary computations are needed. In the results reported here,
very good agreement has been found between the diffusion
coefficient evaluated from the simulations and the theoretical
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FIG. 3. Schmidt number plotted against inverse viscosity.
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FIG. 4. Radial distribution function for ©=2200.2.

predictions over a wide range of viscosities. Therefore one
can specify a priori the simulated Schmidt number. Its val-
ues for the different viscosities considered are shown in Fig.
3 and indicate that, for the largest values of w, Sc=10° as
encountered in real experiments. It should be pointed out that
the Schmidt number defined in terms of Eq. (10) depends on
the fluid particle size h, which is consistent with the physical
view that large patches of fluid display less fluctuations
than small ones and, consequently, different diffusion
properties. 18

As a last remark, we noticed that in Ref. 23 the authors
were concerned about the existence of a solidlike structure in
DPD simulations at high coarse-graining levels. When a
solid structure develops the MSD, after an initial increase, it
remains approximately constant, which could produce a mis-
leading result of a very small self-diffusion coefficient and,
consequently, large Sc. We have explicitly checked that this
situation does not occur in our simulations: first, by looking
at the MSD (always linearly increasing with time) and, sec-
ond, by inspecting the radial distribution function g(r). No
indications of secondary peaks (typically indicating partially
crystallized structures) were found, as can be seen from the
plot in Fig. 4.
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