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Anti-di�usion method for interface steepening in
two-phase incompressible �ow

K. K. So, X. Y. Hu and N. A. Adams
Lehrstuhl für Aerodynamik, Technische Universität München, 85748 Garching, Germany

Abstract

In this paper, we present a method for obtaining sharp interfaces in two-phase
incompressible �ow by an anti-di�usion correction. The underlying discretization
is based on the volume-of-�uid (VOF) interface-capturing method. The key idea
is to steepen the interface by solving the di�usion equation with reverse time, i.e.
an anti-di�usion equation, after each advection step of the volume fraction. As
a solution of the anti-di�usion equation requires regularization, a limiter based
on the directional derivative is developed for calculating the gradient of the vol-
ume fraction. This limiter ensures the boundedness of the volume fraction. The
formulation of the limiter and the algorithm for solving the anti-di�usion equa-
tion are suitable for 3-dimensional unstructured meshes. Validation computations
are performed for 2- and 3- dimensional rising-bubble and rising-drop con�gura-
tions, and for Cartesian and non-Cartesian meshes. The results demonstrate that
sharp interfaces can be recovered reliably and that the results agree with previous
simulations based on di�erent interface methods and with experiments.
Key words: two-phase �ow, volume-of-�uid, interface steepening, anti-di�usion,
unstructured meshes

1. Introduction

The numerical simulation of two-phase incompressible �ows is an area of high
interest in academia and industry. Various approaches have been developed. Two
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main directions are interface-tracking methods and interface-capturing methods.
With interface-tracking methods, the location of the interface is explicitly rep-

resented. Examples of interface-tracking methods include front tracking methods
[1, 2] and marker methods [3, 4]. These latter, e.g., can e�ectively locate the inter-
face position by interface markers. However, they encounter di�culties for large
interface deformations and topology changes, and require a special treatment of
the interface marker distribution when the interface is stretched or compressed.

On the other hand, interface-capturing methods do not explicitly track the loca-
tion of the interface, but capture the location of the interface implicitly. Examples
of interface-capturing methods include the level-set method and the volume-of-
�uid (VOF) method. With the level-set method the interface is de�ned as the
zero contour of a signed-distance function - the level-set function. The interface
is sharp by de�nition and sharpness is maintained by recovering the signed dis-
tance property of the level-set function through reinitialization. From the level-set
function the curvature of the interface and the surface tension can be calculated
with high accuracy. However, a main drawback of the level-set method is lack of
discrete conservation. We refer to references [5] and [6] for a detailed description
of the level-set method.

With VOF methods, the two phases are de�ned by the volume fraction which
assumes values between 0 and 1. The interface is represented by the transition
region where the volume fraction ramps up from 0 to 1. The main advantage of
VOF methods is the exact conservation of mass. One main drawback of VOF
methods is that the interface cannot be located precisely, which leads to inaccura-
cies in calculating interface curvature and thus surface tension. References [7] and
[4] provide an overall review of VOF methods.

To obtain a sharp interface for VOF methods, two methodologies are generally
used. First, with VOF volume-tracking methods, the interface is reconstructed
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before each advection step, and subsequently the �ow is updated by propagat-
ing the reconstructed interface. Di�erent interface-reconstruction schemes have
been developed, the basic ones include simple line interface calculation (SLIC)
[8], SOLA-VOF [9] and piecewise-linear interface construction (PLIC) [4]. For the
interface-propagation step the operator split method is generally used [4]. Draw-
backs of the VOF volume-tracking method are: the curvature of the reconstructed
interface is not smooth, which leads to inaccuracies in the interface propagation
step; the interface propagation can become unstable for very complex interfaces.
Unphysical �ows, termed ��otsam� and �jetsam�, can be created due to the errors
induced by the volume-tracking algorithm [7]. Second, instead of reconstructing
and propagating the interface as with the VOF volume-tracking method, in VOF
volume-capturing methods the volume fraction is advected with a special treat-
ment to reduce the numerical di�usion. Examples include the introduction of an
arti�cial-compression term in the advection equation [10].

For all methods, one prime criterion of accurate two-phase �ow simulation is to
maintain a su�ciently sharp interface throughout the simulation. How to obtain a
sharp interface with interface-capturing methods has been studied by a number of
researchers in the past. Examples include the usage of a compressive scheme which
blends an upwind di�erencing scheme and a higher-order di�erencing scheme for
the advection step [11], limited downwind anti-di�usive �ux correction [12], and
the use of arti�cial compression as an intermediate step [13]. In this paper, we
propose a regularized anti-di�usion correction technique which can be used in a
straight-forward fashion with underlying VOF discretization schemes on regular or
irregular meshes. We demonstrate that by this correction technique, applied after
the VOF advection step, a desired interface sharpness can be recovered reliably
and e�ciently.

For interface steepening methods it is possible to impose a parameter to de�ne

3
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the desired interface thickness for obtaining convergence and stability, for example
in [13, 14] the interface thickness is related to the grid size through a parameterd.
However, determination of parameters de�ning the interface thickness is empirical.
Alternatively, as is the case for our anti-di�usion-correction algorithm presented
in this paper, a stopping criterion for the correction step can be developed. The
stopping criterion should be normalized such that it is case- and grid-resolution-
independent.

The governing equations and an overview of the solution procedure are pre-
sented in Section 2. The main focus of the paper, which is the formulation of the
anti-di�usion equation and the solution algorithm, is presented in Section 3. Nu-
merical cases and results are presented in Section 4. Finally, concluding remarks
are given in Section 5.

2. Governing equations

In this paper, the open source CFD package,OpenFOAM [15] is employed as
the simulation platform. This procedure underlines the fact that the proposed anti-
di�usion correction can be used in a straight-forward fashion with any underlying
VOF discretization scheme. OpenFOAM is a �nite-volume package for solving
partial di�erential equations on 3-dimensional unstructured meshes. The solver
interFoam in the OpenFOAM package is designated for solving two-phase �ow
using a VOF volume-capturing method and is utilized as the basis for developing
the anti-di�usion correction method in this paper. The main part of the solution
procedure of the solver is described by Rusche [10]. The governing equations
for unsteady, incompressible, viscous, immiscible two-phase �ow are given by the
continuity equation and the Navier-Stokes equation

∇ · u = 0 (1)

4
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∂ρu

∂t
+∇ · (ρuu) = −∇p +∇ · T + ρg + fσ , (2)

where u is the velocity, ρ is the density, t is the time, p is the pressure, T

is the stress tensor, g is the gravitational acceleration, and fσ is the force due to
surface tension. For a two-phase �ow, the two �uids are represented by the volume
fraction α which is de�ned as

0 ≤ α ≤ 1 , (3)

where α = 0 refers to the �rst �uid, α = 1 refers to the second �uid, and
0 < α < 1 refers to the transitional region, i.e. the interface between the two
�uids. The volume fraction is advected by the �ow, resulting in the volume-
fraction-transport equation

∂α

∂t
+∇ · (αu) = 0 . (4)

The local density ρ and viscosity µ are given by

ρ = αρ1 + (1− α)ρ2 (5)

µ = αµ1 + (1− α)µ2 , (6)

where the subscripts 1 and 2 denote the respective �uids of the two-phase �ow.
The stress tensor is given by Newton's law

T = µ(∇u +∇uT ) . (7)

The surface curvature of the interface κ is given by

5
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κ = ∇ ·
( ∇α

|∇α|
)

. (8)

The force due to surface tension is formulated by the Continuum Surface Force
(CSF) as given by Brackbill et al. [16]

fσ = −σκ∇α , (9)

where σ is the surface tension.
The above governing equations de�ne the continuity of mass and momentum

of the incompressible two-phase �ow. For obtaining a sharp phase-interface, a new
element of the solution algorithm - the anti-di�usion correction - is introduced and
de�ned by

∂α

∂τ
= ∇ · (D∇α) , (10)

where D is the di�usion coe�cient and τ is a pseudo time for evolving the anti-
di�usion correction. In the di�usion equation (10), positiveD represents a normal
di�usion process, while negativeD represents a di�usion process with reverse time,
which can be regarded as an anti-di�usion process.

The discretization of the advection equation and momentum equation follows
the underlying OpenFOAM algorithm as given in [10]. First, the advection equa-
tion (4) is evaluated for one time step based on the TVD limiter by Jasak et al.
[17]. Subsequently, the new part, the anti-di�usion-correction, equation (10) is
solved after each time step of the advection equation (4). The density and viscos-
ity updates are computed from the new volume-fraction �eld. Subsequently, the
momentum and continuity equations are solved by the PISO algorithm by Issa
[18], as available in OpenFOAM.

The main focus of this paper is the anti-di�usion correction after the advection

6
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step, and the rest of the paper is devoted to the detailed description of the anti-
di�usion correction. For a comprehensive description of the other details of the
solution procedure as provided byOpenFOAM the reader is referred to references
[11, 10, 15, 17, 18, 19].

3. Anti-di�usion correction

3.1. Formulation of the 1-dimensional anti-di�usion equation

Before formulating the anti-di�usion correction for 3-dimensional �ow simu-
lations, the essential properties of the anti-di�usion correction are illustrated for
1-dimensional setting. The key idea is to sharpen the interface by applying anti-
di�usion to the interface which has been smeared out due to numerical di�usion
during the volume-fraction advection step. For this purpose the di�usion equa-
tion (10) is solved with a negative di�usion coe�cientD. The di�usion equation
(10) can be reformulated for the di�usion coe�cientD set to -1, as anti-di�usion
process with constant di�usion coe�cient

∂α

∂τ
= ∇ · (−∇α) . (11)

The anti-di�usion equation is ill-posed, therefore an approximate numerical
solution requires regularization. A solution to an anti-di�usion equation was �rst
proposed by Boris and Book, where the �ux corrected transport (FCT) algorithm
is adopted [20]. Di�erent methods attempting to solve the anti-di�usion equa-
tion in a stabilized way by formulating a non-linear di�usion coe�cient have been
reported and applied in the �eld of image processing, e.g. �stabilized inverse dif-
fusion equations� [21] and �forward-and-backward adaptive di�usion process� [22].
On the other hand, monotonicity preserving constraints for ensuring boundedness
were studied in references [23, 24]. Imposing maximum and minimum bounds by

7
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considering the solution in the neighboring cells for ensuring boundedness on un-
structured meshes was proposed by Ubbink and Issa [11]. The usage of aminmod
function for a discrete inverse di�usion for �ltering purposes in image processing
was proposed by Osher and Rudin [25]. An analysis of the stabilized inverse dif-
fusion based on a minmod function was carried out by Breuÿ et al. [26, 27]. In
this paper we propose a discrete anti-di�usion equation regularized by aminmod
function.

Below we will �rst illustrate the 1-dimensional discretization procedure based
on a minmod function and then propose a modi�cation which is suitable for a later
extension to multiple dimensions and unstructured meshes.

3.1.1. Regularized anti-di�usion equation by minmod function

Considering a 1-dimensional equidistantly spaced grid, the anti-di�usion equa-
tion can be regularized and solved numerically by using aminmod function as
given in references [26, 27] for the numerical �ux calculation

Fi−1/2 = minmod
(

αi+1 − αi

∆x
,
αi − αi−1

∆x
,
αi−1 − αi−2

∆x

)
, (12)

where i indicates the cell under consideration, Fi−1/2 is the numerical �ux
between the cell i− 1 and the cell i, and

minmod (a, b, c) = sgn (b)max (0,min (sgn (b) a, |b| , sgn (b) c)) . (13)

The calculation of Fi−1/2 requires αi+1, αi, αi−1 and αi−2. However, the algo-
rithm cannot be applied directly for 3-dimensional and irregular meshes asαi+1

and αi−2 are not well de�ned with respect to the cell face between cell i and cell
i− 1. For this reason we propose a compact re-formulation of eq. (12) as follows:

8
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Modi�cation 1. We decompose the numerical �ux calculation by eq. (12) into the
following two steps:

1. ∇α at cell center is calculated based on aminmod function.

2. The numerical �ux is calculated based on selecting∇α with minimum mag-
nitude.

Step 1. (∇α)i at the cell center is calculated as

(∇α)i = minmod
(

αi+1 − αi

∆x
,
αi − αi−1

∆x

)
, (14)

where

minmod (a, b) =





a if a · b > 0 and |a| ≤ |b|

b if a · b > 0 and |b| ≤ |a|

0 else

. (15)

Step 2. Fi−1/2 is calculated as

Fi−1/2 =





(∇α)i if |(∇α)i| ≤
∣∣(∇α)i−1

∣∣

(∇α)i−1 if
∣∣(∇α)i−1

∣∣ < |(∇α)i|
. (16)

By combining (14) and (16) it can be shown that the resulting numerical �ux
function is equivalent to that of (12). Note that by (14) the calculation of(∇α)i

requires only αi+1, αi and αi−1, and similarly the calculation of (∇α)i−1 requires
only αi, αi−1 and αi−2.

Modi�cation 2. We further propose an alternative to (14) and (15) for the calcu-
lation of (∇α)i

(∇α)i =
αi+1/2 − αi−1/2

∆x
, (17)

9
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αi+1/2 =





αi+1 if a · a+b
2

> 0 and |a| <
∣∣a+b

2

∣∣
αi+1+αi

2
if a · a+b

2
> 0 and |a| =

∣∣a+b
2

∣∣

αi else

, (18a)

αi−1/2 =





αi−1 if b · a+b
2

> 0 and |b| <
∣∣a+b

2

∣∣
αi+αi−1

2
if b · a+b

2
> 0 and |b| =

∣∣a+b
2

∣∣

αi else

, (18b)

where a = αi+1−αi

∆x
, b = αi−αi−1

∆x
and a+b

2
= αi+1−αi−1

2∆x
which is the gradient

evaluated by central di�erencing.
By comparing (14) and (15), with (17), (18a) and (18b), it can be shown that

the resulting (∇α)i are equivalent. Note that by (18a) the evaluation of αi+1/2

requires only the directional derivative a = αi+1−αi

∆x
and the gradient evaluated by

central di�erencing a+b
2

= αi+1−αi−1

2∆x
. The same holds for the calculation of αi−1/2

by (18b). (∇α)i can then be calculated from αi+1/2 and αi−1/2 by (17).

3.1.2. Time discretization

After the numerical �ux is calculated, α is forwarded in pseudo time by an
explicit Euler scheme as

αn+1
i = αn

i +

(
Fi−1/2 − Fi+1/2

)

∆x
∆τ , (19)

where αn+1
i and αn

i are the volume fractions at the new and the old time step,
respectively. ∆τ is the pseudo-time step of the anti-di�usion process. Based on
the stability analysis by Breuÿ [26] of the stabilized inverse di�usion, regularized
by a minmod function, the time-step-size constraint for stable pseudo-time ad-
vancement of our anti-di�usion equation is derived accordingly as

10
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∆τ =
(∆x)2

2 |D| . (20)

The e�ect of the anti-di�usion correction is illustrated in Fig. 1. Initially a
1-dimensional pro�le, increasing monotonically fromα = 0 to α = 1 with a transi-
tion region across 6 cells, is de�ned, which is an analog to the numerically di�used
interface of a two-phase �ow. By solving the anti-di�usion equation repeatedly, the
transition region becomes thinner which represents a steepened interface. As can
be seen from the result, the anti-di�usion correction exhibits the desired properties
which are crucial for two-phase �ows with sharp interfaces: reduction of the thick-
ness of the transition region with respect to its central position and boundedness
of the volume fraction between 0 and 1.

[Figure 1 about here.]

3.1.3. Measurement of interface sharpness

After each volume-fraction advection step, the anti-di�usion correction is per-
formed repeatedly to attain a sharp interface. In multiple dimensions and for
unstructured grids a grid-independent measure of interface sharpness is required
to derive a stopping criterion for the anti-di�usion iteration. For this purpose, we
use the �ux di�erence ∇ · (−∇αi) =

(Fi−1/2−Fi+1/2)
∆x

as a measurement of interface
sharpness.

For a case- and grid-resolution-independent criterion, interface sharpness tol-
erances TOL1 and TOL2 are de�ned, and the term∇ · (−∇αi) is normalized as

TOL1 ≤

∑
i

|∇ · (∇αi)|
∑

i

|∇αi|2
, (21)

11
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TOL2 ≤
max

i
(|∇ · (∇αi)|)

max
i

(|∇αi|2
) , (22)

where
∑

i

denotes the summation over all cells,max
i

determines the maximum

value from all cells, and ∇αi = αi+1−αi−1

2∆x
. The evolution of TOL1 and TOL2

corresponding to the anti-di�usion correction in Fig. 1 is shown in Fig. 2.

[Figure 2 about here.]

3.2. Formulation of the anti-di�usion equation for multiple dimensions and un-
structured meshes

To extend the idea of interface steepening by anti di�usion to multiple di-
mensions and unstructured meshes, and to couple the anti-di�usion algorithm
with volume-fraction advection and the Navier-Stokes equations for realistic �ow
simulations, the di�usion coe�cient is related to the numerical di�usion due to
advection. A modi�ed-di�erential equation analysis of the numerical di�usion
induced by an upwind scheme shows that the numerical di�usion coe�cient is
1
2
u∆x

(
1− u∆t

∆x

)
e.g. [28]. In our formulation of the anti-di�usion correction the

aim is to counteract the numerical di�usion resulting from discrete advection. For
this purpose the di�usion coe�cient in the anti-di�usion equation is chosen to be
|u|, i.e. the di�usion coe�cient D is set to − |u|

∂α

∂τ
= ∇ · (− |u|∇α) , (23)

where |u| is constant in τ .
For multiple dimensions, the interface normal direction is to be taken into

account so that the interface is sharpened in its normal direction. For this purpose,
the anti-di�usion correction �ux is projected onto the interface normal direction.
Hence the di�usion equation (23) is reformulated as
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∂α

∂τ
= ∇ · [− |u| (∇α · nI)nI ] . (24)

The interface unit normal nI is calculated as

nI =
(∇α)∗

|(∇α)∗| , (25)

where (∇α)∗ is calculated by the Gauss theorem from

(∇α)∗ =

∑
cf (αS)

V
. (26)

Here
∑

cf denotes the summation over all cell faces, S is the cell surface area
vector, V is the cell volume. α is obtained by averaging the volume fractions of
cells P and N (refer to Fig. 3), i.e. αP +αN

2
, where αP and αN are the volume

fractions of cell P and N respectively.

[Figure 3 about here.]

After each advection time step the anti-di�usion correction is evolved in pseudo
time. Note that in order to maintain the interface location during the successive
correction steps nI is calculated at the �rst anti-di�usion correction step [14], i.e.
τ = 0. The anti-di�usion equation (24) is evaluated with constantnI

nI =
(∇α)∗τ=0

|(∇α)∗τ=0|
. (27)

3.3. Ensuring boundedness of the volume fraction when solving the anti-di�usion
equation

Based on the regularization of the anti-di�usion equation by aminmod function
in the 1-dimensional setting detailed in section 3.1.1, we propose a limiter based
on the directional derivative to ensure boundedness of the volume fraction on
unstructured meshes. The anti-di�usion algorithm involves the following steps:

13
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1. A cell average of∇α is calculated following the Gauss theorem with a limiter
based on the directional derivative.

2. The calculated cell-averaged ∇α is projected onto the interface-normal di-
rection and multiplied by the di�usion coe�cient and the interface-normal
vector to obtain [− |u| (∇α · nI)nI ].

3. The cell-averaged divergence ∇ · [− |u| (∇α · nI)nI ] is calculated from the
Gauss theorem.

4. An Euler explicit scheme is used for pseudo-time discretization of the anti-
di�usion equation.

During pseudo-time advancement nI is �xed at its initial value.

3.3.1. Calculation of ∇α

A limited value of the volume-fraction gradient ∇α is calculated by Gauss
theorem with an interpolation of the volume fraction at the cell face based on the
following algorithm:

Step 1. Given cells P and N (see Fig. 3), we �rst calculate:

• The cell-averaged gradient (∇α)∗ from equation (26) for cells P and N.

• The directional derivative ∂α
∂c

from

∂α

∂c
=

(αN − αP )

‖cN − cP‖ , (28)

where cP and cN are the cell-center-position vectors of cell P and N respectively.

Step 2. (∇α)∗P is projected onto the cell-face-normal direction, leading to the term
(∇α)∗P · n̂cf , where n̂cf is the cell-face unit normal of the face between the cells
P and N. (∇α)∗P · n̂cf and ∂α

∂c
are compared to select the volume fractionα′ from

αP and αN for calculating the limited gradient of volume fraction in the next

14
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step. The selection is equivalent to the step (18a) and (18b) in the 1-dimensional
setting. Direction and magnitude of (∇α)∗P · n̂cf and ∂α

∂c
are compared for choosing

the volume fraction as

α′ =





αN if [(∇α)∗P · n̂cf ]
∂α
∂c

> 0 and |(∇α)∗P · n̂cf | <
∣∣∂α

∂c

∣∣
αP +αN

2
if [(∇α)∗P · n̂cf ]

∂α
∂c

> 0 and |(∇α)∗P · n̂cf | =
∣∣∂α

∂c

∣∣

αP else

. (29)

This procedure is applied to all cell faces of each cell with the respective cell
neighbors N.

Step 3. The cell-averaged value of the volume-fraction gradient(∇α)P for cell P is
calculated by the Gauss theorem based on theα′ selected from the Step 2 above.

(∇α)P =

∑
cf (α

′S)

V
. (30)

This procedure is equivalent to step (17) in the 1-dimensional setting. Compar-
ing (30) to the equation (26) it can be recognized that regularization is achieved
by replacing cell-face values of α obtained from an arithmetic average by the α

obtained from the above selection procedure.

3.3.2. Divergence of [− |u| (∇α · nI)nI ]

After obtaining (∇α)P , it is projected onto the interface-normal direction by
multiplication with nI which is given by equation (27). Equivalent to the calcu-
lation of the term ∇ · (−∇α) =

(Fi−1/2−Fi+1/2)
∆x

in the 1-dimensional setting, the
�ux at the cell face between cell P and cell N is limited by selection based on the
minimum of ‖ ((∇α)P · nI)nI‖ and ‖ ((∇α)N · nI)nI‖

15
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((∇α)P · nI)nI =





((∇α)P · nI)nI if ‖ ((∇α)P · nI)nI‖ ≤ ‖ ((∇α)N · nI)nI‖

((∇α)N · nI)nI if ‖ ((∇α)N · nI)nI‖ < ‖ ((∇α)P · nI)nI‖
(31)

The limited �ux is further multiplied by the di�usion coe�cient− |uP |, i.e.
the cell-averaged velocity magnitude for cell P. Then the cell average of ∇ ·
[− |uP | ((∇α)P · nI)nI ] is calculated by the Gauss theorem as

∇ · [− |uP | ((∇α)P · nI)nI ] =

∑
cf ([− |uP | ((∇α)P · nI)nI ] · S)

V
. (32)

3.3.3. Time-step criterion

The time derivative is discretized by an explicit Euler scheme. The volume
fraction is forwarded in pseudo time by

αn+1 = αn + (∇ · [− |u| (∇α · nI)nI ]) ∆τ , (33)

where αn+1 and αn are the volume fractions at the new and the old time
step respectively. In the 1-dimensional setting the CFL requirement (20) for the
stabilized inverse di�usion equation applies. From numerical experimentation we
�nd that stable time integration for multiple dimensions, unstructured meshes and
variable di�usion coe�cient is achieved by

∆τ =
1

4

(∆x)2

|u|max

, (34)

where ∆x is the minimum cell width and |u|max the maximum velocity mag-
nitude over the entire computational domain.
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3.4. Stopping criterion for the anti-di�usion correction

For de�ning a stopping criterion for the anti-di�usion correction formulation in
multiple dimensions and unstructured meshes, the term∇ · [− |u| ((∇α) · nI)nI ]

is used to measure the interface sharpness. Sharpness tolerancesTOL1 and TOL2

are de�ned as

TOL1 ≤

∑
i

|∇ · [(∇αi · nI)nI ]| · V
∑

i

|(∇αi)
∗|2 · V

(35)

TOL2 ≤
max

i
(|∇ · [(∇αi · nI)nI ]| · V )

max
i

(
|(∇αi)

∗|2 · V
) . (36)

For demonstrating the e�ect of the tolerances the anti-di�usion correction is
applied to a steady di�used 3-dimensional pro�le, Fig. 4. The corresponding
evolution of TOL1 and TOL2 is shown in Fig. 5. For realistic �ow simulations
we �nd by numerical experimentation that a desired interface sharpness and the
simulation stability can be achieved by TOL1 = 0.75 and TOL2 = 0.75. These
interface sharpness tolerances are used in all numerical validation computations of
the next section.

[Figure 4 about here.]

[Figure 5 about here.]

4. Numerical results

The anti-di�usion interface-steepening algorithm is validated with the following
numerical examples. First, a 2-dimensional rising-bubble case is considered. A
comparison with reference data from literature and a convergence study are carried

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

out. Second, a 3-dimensional rising-bubble, and third a 2-dimensional and a 3-
dimensional axisymmetric rising-drop on a non-Cartesian mesh are examined. In
all cases for the numerical discretization of the volume-fraction-transport equation
the van Leer limiter [29] is employed for calculating the �ux and an Euler explicit
scheme is employed for time integration. All computations are carried out with a
CFL number of 0.5.

4.1. 2-dimensional rising bubble

First, the 2-dimensional rising-bubble case of Olsson and Kreiss [13] is consid-
ered. The parameters used in this numerical example are

ρ1 = 1, ρ2 = 0.0013,
µ1 = 1, µ2 = 0.016,
σ = 7.3× 10−2 N/m,
Re = 500, Fr = 0.45, We = 0.68,
where ρ is the density, µ is the liquid viscosity, σ is the surface tension of the

liquid, and the subscripts 1 and 2 refer respectively to the water phase and the air
phase. The reference parameters are ρref = 1.0 × 103kg/m3, lref = 5.0 × 10−3 m

and uref = 0.1 m/s. The computational domain size is 2lref × 4lref . The bubble
is initialized at the position (1lref , 1lref ). Four di�erent grid resolutions are used:
∆x = 2/25, ∆x = 2/50, ∆x = 2/100, ∆x = 2/200.

The volume-fraction contours 0.05, 0.5 and 0.95 of the bubble at t = 0.5 ob-
tained by the anti-di�usion interface steepening method are shown in Fig. 6(a).
The result of Olsson and Kreiss [13] is reproduced in Fig. 6(b) for comparison.
Bubble-shape convergence is observed for a grid re�nement from∆x = 2/25 to
∆x = 2/200. The bubble shapes at lower grid resolutions are signi�cantly more
accurate than that of [13]. The bubble rising velocity is shown in Fig. 7(a), and
compared with that of [13] in Fig. 7(b). The grid convergence of the rising velocity
is observed to be faster than that of [13].
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[Figure 6 about here.]

[Figure 7 about here.]

4.2. 3-dimensional rising bubble

Second, for validation in 3 dimensions, the case of an air bubble rising in a
water-glucose solution based on the experiment carried out by Bhaga and Weber
[30] is studied. The case can be characterized by the Reynolds number, the Eötvös
number and the Morton number

Re =
ρdBUB

µ
= 2.47, Eö =

gd2
eρ

σ
= 116, Mo =

gµ4

ρσ3
= 848 ,

where ρ is the liquid density, dB = 0.0261 m is the bubble volume-equivalent
diameter, UB is the bubble terminal rising velocity, µ is the liquid viscosity, σ is
the surface tension of the liquid and g is the gravitational acceleration.

The computational domain size is 5de × 10de × 5de. The grid resolution is
50 x 100 x 50. A spherical bubble of de = 1 is initialized at position (2.5de,

1de, 2.5de). The boundary condition at the front, back, left, right and bottom
domain boundaries is set as no-slip wall. Corresponding to the experimental setup
of a rising bubble in a vertical tube open to the atmosphere, the top boundary
is set to a free-surface boundary condition. For such a boundary condition the
volume fraction can be either Neumann-type (zero gradient) or Dirichlet-type,
depending on the direction of the �ux [10], where the boundary condition is de�ned
as inlet / outlet in the OpenFOAM library [15]. The pressure is adjusted by the
Bernoulli equation, where the boundary condition is de�ned astotalPressure in the
OpenFOAM library. The velocity is evaluated from the pressure and the direction
of the �ux, where the boundary condition is de�ned as pressure inlet / outlet
velocity in the OpenFOAM library.
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The bubble reaches a steady shape after an initial transient period. The
volume-fraction contour 0.5 of the steady bubble at t = 0.55 s is shown in Fig.
8(a). The interface sharpness can be evaluated by the volume-fraction contours
0.05, 0.5 and 0.95 in Fig. 8(b). A terminal oblate-ellipsoidal-cap bubble shape
is obtained, which corresponds to the experimental observation [30]. The rising
velocity of the bubble is plotted in Fig. 9. The computed Reynolds number based
on the terminal rising velocity from the simulation is 2.40 and compares well to
the experimental Reynolds number of 2.47.

[Figure 8 about here.]

[Figure 9 about here.]

4.3. Rising drop in a periodically constricted capillary tube

Third, in order to validate the anti-di�usion correction algorithm for non-
Cartesian meshes, a case of a drop rising in a periodically constricted capillary
tube is considered. The case is based on the experiment carried out by Hemmat
and Borhan [31] and simulated previously by Muradoglu and Kayaalp [32]. The
parameters used in this numerical example are

ρo = 1160 kg/m3, ρd = 966 kg/m3,
µo = 87 mPa s, µd = 115 mPa s,
σ = 0.0042 N/m,
where the subscripts o and d denote the ambient �uid and the drop �uid respec-

tively. Similarly as [32], a portion of 26 cm of a periodically constricted capillary
tube is selected as the computational domain, which is shown in Fig. 10. The
constricted capillary tube has the following geometric parameters: average radius,
R = 0.5 cm, wavelength of corrugations, h = 4 cm, and amplitude of corrugations
A = 0.07 cm. The grid resolution of the computational domain is 32 x 1664. The
size of the drop is measured by κ which is de�ned as the ratio of the equivalent
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spherical drop radius toR. A drop of κ = 0.92 is initialized at the height of0.01 cm

along the centreline. Simulation time is non-dimensionalized by

tref =
µo

∆ρgyR
, (37)

where tref is the reference time, ∆ρ = ρo − ρd and gy is the gravitational
acceleration.

[Figure 10 about here.]

First, a 2-dimensional planar case is simulated where the boundary condition
of the top, bottom and right boundaries is no-slip wall, and at the left boundary
a symmetry condition is imposed. Second, an axisymmetric 3-dimensional case is
simulated.

The volume-fraction contours 0.05, 0.5 and 0.95 at di�erent time instants are
shown in Fig. 11 for the 2-dimensional planar case and the axisymmetric case. A
sharp interface is obtained on the given non-Cartesian meshes for both cases. In
addition it can be seen that the drop shape is periodic with respect to the periodic
corrugation. This is in good agreement with the experiment [31] where it was
stated that the drop deformation parameter was found to be periodic for all drop
sizes without drop breakup. Note that [32] does not recover this behavior. In the
2-dimensional planar case the drop area corresponds to the drop mass, allowing to
assess the discrete conservation of mass. A comparison of the drop area at di�erent
time steps with the simulation by Muradoglu and Kayaalp [32] suggests that the
drop mass is better conserved by our simulations.

[Figure 11 about here.]

Further comparisons of the drop shape in the 2-dimensional planar case and
the axisymmetric case, as shown in Fig. 12, reveal that the necking of the rising
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drop after the corrugation is more pronounced in the axisymmetric case. This
agrees with the observation that periodic constrictions lead to stronger cross-
section reduction in 3 dimensions than in 2 dimensions, resulting in a stronger
drop deformation.

[Figure 12 about here.]

5. Concluding remarks

In this paper we have proposed an interface steepening method by an anti-
di�usion correction for two-phase incompressible �ows based on the VOF interface-
capturing method. The method possesses the following properties: (i) no interface
reconstruction is required for the volume-fraction advection, (ii) a sharp phase-
interface is maintained throughout the simulation, and (iii) a desired interface
sharpness can be attained based on a case- and grid-resolution -independent inter-
face sharpness measurement.

First, in a 1-dimensional setting an anti-di�usion equation is formulated, and
the equation is solved after each volume-fraction advection. Aminmod function is
employed to regularize the anti-di�usion equation for a numerical solution. Modi�-
cations to theminmod function, which allow for an extension to multiple dimension
and unstructured meshes, are presented. 1-dimensional results show that the in-
terface can be steepened and the boundedness of the volume-fraction is preserved.
A suitable interface sharpness measurement is developed that does not require the
evaluation of additional terms as it is based on the �ux di�erence directly.

The anti-di�usion method is extended to multiple dimensions and unstructured
meshes, and coupled with the volume-fraction advection and the Navier-Stokes
equation for realistic �ow simulations. The anti-di�usion equation is reformulated
by taking into account the interface normal direction and by adopting the veloc-
ity magnitude as the di�usion coe�cient, following modi�ed-di�erential equation
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analysis of the numerical di�usion due to advection. A limiter based on the di-
rectional derivative, which follows the 1-dimensional modi�edminmod function,
is proposed and allows for stable solution of the anti-di�usion equation. The anti-
di�usion correction can be carried out repeatedly to attain a desired interface
sharpness. A stopping criterion for the anti-di�usion iteration, which is based on
the interface sharpness measurement, is developed.

Validation computations are performed for 2- and 3- dimensional rising-bubble
and rising-drop con�gurations, and for Cartesian and non-Cartesian meshes. The
results agree well with experiments and show the advantages of the current method
in comparison with previous simulations by other methods. In particular, the
method is more accurate at low grid resolutions and the grid convergence is faster
as compared, e.g., to reference [13]. The simulation of a drop rising in a periodically
constricted capillary tube by our method reproduces the experimental observation
of periodic drop-deformation [31], which suggests that the current method is a
signi�cant improvement as compared to reference [32].

Though originally being proposed for solving the anti-di�usion equation, two
aspects of the present method may also be applied to other computational modeling
problems. First, as the proposed modi�cation of theminmod function can be em-
ployed as a general slope limiter, it may also be applied to more general equations
on unstructured meshes than has been done in this paper. Second, as the proposed
interface-sharpness measurement gives a general assessment of a VOF interface rep-
resentation, which is independent of the speci�c interface-steeping method, it may
also be used within other methods such as the arti�cial-compression steepening
[13].

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

References

[1] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incom-
pressible, multi-�uid �ows, Journal of Computational Physics 100 (1) (1992)
25-37.

[2] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, Y. J. Jan, A front-tracking method for the computations of
multiphase �ow, Journal of Computational Physics 169 (2) (2001) 708-759.

[3] D. J. Torres, J. U. Brackbill, The point-set method: Front-tracking without
connectivity, Journal of Computational Physics 165 (2) (2000) 620-644.

[4] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and in-
terfacial �ow, Annual Review of Fluid Mechanics 31 (1999) 567-603.

[5] S. Osher, R. P. Fedkiw, Level set methods: An overview and some recent
results, Journal of Computational Physics 169 (2) (2001) 463-502.

[6] J. A. Sethian, P. Smereka, Level set methods for �uid interfaces, Annual Review
of Fluid Mechanics 35 (2003) 341-372.

[7] W. J. Rider, D. B. Kothe, Reconstructing volume tracking, Journal of Com-
putational Physics 141 (2) (1998) 112-152.

[8] W. Noh, P. Woodward, Lecture Notes in Physics, Springer Berlin, 1976.

[9] C. W. Hirt, B. D. Nichols, Volume of �uid (VOF) method for the dynamics of
free boundaries, Journal of Computational Physics 39 (1) (1981) 201-225.

[10] H. Rusche, Computational �uid dynamics of dispersed two-phase �ows at
high phase fractions, Ph.D. thesis, Imperial College of Science, Technology &
Medicine (2002).

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[11] O. Ubbink, R. I. Issa, A method for capturing sharp �uid interfaces on arbi-
trary meshes, Journal of Computational Physics 153 (1) (1999) 26-50.

[12] Z. Xu, C.-W. Shu, Anti-di�usive �ux corrections for high order �nite di�erence
WENO schemes, Journal of Computational Physics 205 (2) (2005) 458-485.

[13] E. Olsson, G. Kreiss, A conservative level set method for two phase �ow,
Journal of Computational Physics 210 (1) (2005) 225-246.

[14] E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase
�ow II, Journal of Computational Physics 225 (1) (2007) 785-807.

[15] Openfoam, http://www.opencfd.co.uk/openfoam/, version 1.5.

[16] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling
surface tension, Journal of Computational Physics 100 (2) (1992) 335-354.

[17] H. Jasak, H. G. Weller, A. D. Gosman, High resolution NVD di�erencing
scheme for arbitrarily unstructured meshes, International Journal for Numerical
Methods in Fluids 31 (2) (1999) 431-449.

[18] R. I. Issa, Solution of the implicitly discretised �uid �ow equations by
operator-splitting, Journal of Computational Physics 62 (1) (1986) 40-65.

[19] O. Ubbink, Numerical prediction of two �uid systems with sharp interfaces,
Ph.D. thesis, Imperial College of Science, Technology & Medicine (1997).

[20] J. P. Boris, D. L. Book, Flux-corrected transport. I. SHASTA, a �uid trans-
port algorithm that works, Journal of Computational Physics 11 (1) (1973)
38-69.

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[21] I. Pollak, A. S. Willsky, H. Krim, Image segmentation and edge enhance-
ment with stabilized inverse di�usion equations, IEEE Transactions on Image
Processing 9 (2) (2000) 256-266.

[22] G. Gilboa, N. Sochen, Y. Y. Zeevi, Forward-and-backward di�usion processes
for adaptive image enhancement and denoising, IEEE Transactions on Image
Processing 11 (7) (2002) 689-703.

[23] D. S. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-
oscillatory schemes with increasingly high order of accuracy, Journal of Compu-
tational Physics 160 (2) (2000) 405-452.

[24] W. J. Rider, L. G. Margolin, Simple modi�cations of monotonicity-preserving
limiter, Journal of Computational Physics 174 (1) (2001) 473-488.

[25] S. Osher, L. I. Rudin, Shocks and other nonlinear �ltering applied to image
processing, Vol. 1567, SPIE, 1991, pp. 414-431.

[26] M. Breuÿ, T. Brox, T. Sonar, J. Weickert, Stabilized nonlinear inverse dif-
fusion for approximating hyperbolic PDEs, Scale Space and PDE Methods in
Computer Vision, Proceedings 3459 (2005) 536-547.

[27] M. Breuÿ, M. Welk, Staircasing in semidiscrete stabilized inverse linear dif-
fusion algorithms, Journal of Computational and Applied Mathematics 206 (1)
(2007) 520-533.

[28] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge
University Press, 2002.

[29] B. van Leer, Towards the ultimate conservative di�erence scheme. II. mono-
tonicity and conservation combined in a second-order scheme, Journal of Com-
putational Physics 14 (4) (1974) 361-370.

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[30] D. Bhaga, M. E. Weber, Bubbles in viscous-liquidsshapes, wakes and veloci-
ties, Journal of Fluid Mechanics 105 (Apr) (1981) 61-85.

[31] M. Hemmat, A. Borhan, Buoyancy-driven motion of drops and bubbles in
a periodically constricted capillary, Chemical Engineering Communications 150
(1996) 363-384.

[32] M. Muradoglu, A. D. Kayaalp, An auxiliary grid method for computations of
multiphase �ows in complex geometries, Journal of Computational Physics 214
(2) (2006) 858-877.

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

List of Figures
1 1-dimensional pro�le of volume fraction α from value 0 to 1. i

denotes the cell index. 1st AD denotes the pro�le after the �rst
anti-di�usion correction. . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Evolution of TOL1 and TOL2 corresponding to the anti-di�usion
correction in Fig. 1. n denotes the number of anti-di�usion correction. 30

3 The cell arrangement in unstructured meshes. . . . . . . . . . . . . 31
4 Volume-fraction contours 0.05, 0.5 and 0.95 of a 3-dimensional dif-

fused pro�le. (a) Initial pro�le (3-dimensional view). (b) Initial
pro�le (sectional view). (c) Pro�le after 4 anti-di�usion corrections
(3-dimensional view). (d) Pro�le after 4 anti-di�usion corrections
(sectional view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evolution of TOL1 and TOL2 corresponding to the anti-di�usion
correction in Fig. 4. n denotes the number of anti-di�usion correction. 33

6 The volume-fraction contours 0.05, 0.5, 0.95 of the bubble at t =
0.5 in four di�erent grid resolutions. From left to right: ∆x =
2/25, ∆x = 2/50, ∆x = 2/100,∆x = 2/200. (a) Result by anti-
di�usion interface sharpening. (b) Result of Olsson and Kreiss [13],
reproduced with permission. . . . . . . . . . . . . . . . . . . . . . . 34

7 The rising velocity of the bubble in four di�erent grid resolutions.
(a) Result by anti-di�usion interface sharpening. (b) Result of
Olsson and Kreiss [13], reproduced with permission. Dotted line:
25× 50; dashed-dotted line: 50× 100; dashed line: 100× 200; solid
line: 200× 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 (a) 3-dimensional view of volume-fraction contour 0.5 of the bubble
at steady state at t = 0.55s. (b) Sectional view of volume-fraction
contours 0.05, 0.5 and 0.95 of the bubble at steady state att = 0.55s. 36

9 The rising velocity uB of the bubble in the 3-dimensional rising-
bubble case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 The computational domain for case of 2-dimensional rising drop in
a periodically constricted capillary tube. (a) Full domain. (b) Plan
view showing dimensional details (not to scale). . . . . . . . . . . . 38

11 The volume-fraction contours 0.05, 0.5 and 0.95 of the rising drop.
(a) Plots for 2-dimensional planar simulation from t = 0 to t =
3937.5 at time interval of 437.5. (b) Plots for axisymmetric 3-
dimensional simulation from t = 0 to t = 4823.1 at time interval of
535.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 The volume-fraction contours 0.05, 0.5 and 0.95 of the rising drop.
(a) Plot at t = 1750 for the 2-dimensional planar simulation. (b)
Plot at t = 2143.6s for the axisymmetric 3-dimensional simulation. 40

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

α

i

initial profile
1st AD

2nd AD
3rd AD
4th AD

Figure 1: 1-dimensional pro�le of volume fractionα from value 0 to 1. i denotes the cell index.
1st AD denotes the pro�le after the �rst anti-di�usion correction.
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Figure 2: Evolution of TOL1 and TOL2 corresponding to the anti-di�usion correction in Fig. 1.
n denotes the number of anti-di�usion correction.
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Figure 3: The cell arrangement in unstructured meshes.
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(a) (b)

(c) (d)

Figure 4: Volume-fraction contours 0.05, 0.5 and 0.95 of a 3-dimensional di�used pro�le. (a)
Initial pro�le (3-dimensional view). (b) Initial pro�le (sectional view). (c) Pro�le after 4 anti-
di�usion corrections (3-dimensional view). (d) Pro�le after 4 anti-di�usion corrections (sectional
view).
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Figure 5: Evolution of TOL1 and TOL2 corresponding to the anti-di�usion correction in Fig. 4.
n denotes the number of anti-di�usion correction.
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Figure 6: The volume-fraction contours 0.05, 0.5, 0.95 of the bubble att = 0.5 in four di�erent
grid resolutions. From left to right: ∆x = 2/25, ∆x = 2/50, ∆x = 2/100,∆x = 2/200. (a)
Result by anti-di�usion interface sharpening. (b) Result of Olsson and Kreiss [13], reproduced
with permission.
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Figure 7: The rising velocity of the bubble in four di�erent grid resolutions. (a) Result by anti-
di�usion interface sharpening. (b) Result of Olsson and Kreiss [13], reproduced with permission.
Dotted line: 25× 50; dashed-dotted line: 50× 100; dashed line: 100× 200; solid line: 200× 400.
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(a) (b)

Figure 8: (a) 3-dimensional view of volume-fraction contour 0.5 of the bubble at steady state
at t = 0.55s. (b) Sectional view of volume-fraction contours 0.05, 0.5 and 0.95 of the bubble at
steady state at t = 0.55s.
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Figure 9: The rising velocity uB of the bubble in the 3-dimensional rising-bubble case.
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(a) (b)

Figure 10: The computational domain for case of 2-dimensional rising drop in a periodically
constricted capillary tube. (a) Full domain. (b) Plan view showing dimensional details (not to
scale).
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(a) (b)

Figure 12: The volume-fraction contours 0.05, 0.5 and 0.95 of the rising drop. (a) Plot at
t = 1750 for the 2-dimensional planar simulation. (b) Plot at t = 2143.6s for the axisymmetric
3-dimensional simulation.
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