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Abstract

In this paper, a Lagrangian particle method is proposed for the simulation of multiphase flows with surfactant. The

model is based on the multi-phase smoothed particle hydrodynamics (SPH) framework of Hu and Adams [1]. Surface-

active agents (surfactants) are incorporated into our method by a scalar quantity describing the local concentration of

molecules in the bulk phase and on the interface. The surfactant dynamics are written in conservative form, thus

global mass of surfactant is conserved exactly. The transport model of the surfactant accounts for advection and diffu-

sion. Within our method, we can simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial

transport such as adsorption or desorption. The flow-field dynamics and the surfactant dynamics are coupled through

a constitutive equation, which relates the local surfactant concentration to the local surface-tension coefficient. Hence,

the surface-tension model includes capillary and Marangoni forces. The present numerical method is validated by

comparison with analytic solutions for diffusion and for surfactant dynamics. More complex simulations of an oscil-

lating bubble, the bubble deformation in a shear flow, and of a Marangoni-force driven bubble show the capabilities

of our method to simulate interfacial flows with surfactants.

Key words: SPH, Insoluble/soluble surfactant, Surface diffusion, Interfacial flow, Surface tension, Marangoni effects

1. Introduction

Multiphase systems occur in a wide range of technical or biological applications. The dynamics of such systems

are much more complex than that of single-phase systems. Depending on the characteristic length scales, surface-

tension forces at an interface may dominate inertia effects and thus have a strong influence on the overall flow evo-

lution. Surface-tension effects can be differentiated into the capillary force and the Marangoni force. The former is

proportional to the local curvature and minimizes the interface area, the latter accounts for surface-tension gradients

along the interface.

Surface active agents (surfactants) offer the possibility to manipulate or even control the dynamics of multi-phase

systems. By their nature, surfactant molecules adhere to a fluid interface and reduce the local surface tension as they

form a buffer zone between the two phases. The surfactant at an interface is advected with the interfacial motion

and may diffuse along the surface. Consequentially, surface-tension gradients can develop and influence the flow

evolution. Besides the insoluble case, where all molecules are confined to the interface, the dynamics of the surfactant
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can be coupled with the adjacent phases. Depending on the bulk concentration and the local interface concentration,

adsorption and desorption may transport surfactant molecules between the bulk phase and the interface.

Surfactants are widely used in technical and biological applications. Due to the presence of surfactant, e.g. in a

mixture of water and air, very small droplets can be formed which is useful to drug delivery, water purification and

other applications. Even more important is the presence of surfactant in pulmonary alveoli, whose liquid-lining layer

can function only with a substance that reduces surface tension (Pattle [2], Clements [3]). A simple estimate of the

pressure in the liquid layer of an alveolar structure with a characteristic length scale of about 100 µm and the Young-

Laplace equation shows that a pure water-air interface (σ0 ≈ 0.07 N/m) would cause endexpiratory alveolar collapse

and atelectasis (Von Neergard [4]). Moreover, surfactant molecules are believed to contribute also to pulmonary

defence mechanisms and local immunomodulation (Hamm et al. [5]).

A numerical model describing interface dynamics including surfactants needs to handle the phase singularity at the

interface and solve the surfactant evolution equation on the interface. Also, an evolution equation for the surfactant in

the bulk solution needs to be coupled with the interfacial dynamics. As a consequence, the surfactant dynamics and the

flow field cannot be solved independently from each other. Another important issue is the conservative formulation of

the governing equations, in particular with respect to the mass of surfactant. These requirements render the modeling

of multiphase flows with interfaces including surfactant effect a challenging task which has been studied already since

about twenty years.

Early numerical investigations of the effect of surfactants in multiphase systems were limited to the insoluble

case, where the transport of molecules between the bulk phase and the interface is neglected. The models were

mainly used to investigate the effect of surfactants on drop deformation in a shear flow. Stone and Leal [6] solved

the time-dependent convective-diffusion equation for surfactant transport on an interface using the boundary-integral

method. While this work was restricted to two-dimensional problems, Yon and Pozrikidis [7] developed a fully three-

dimensional finite volume method combined with the boundary-element method to study shear flows past a viscous

drop. Whereas these methods described the interface in a discrete way, many following works used a continuous

interface representation to account for interface dynamics. Xu and Zhao [8] used the Eulerian level set method, where

the moving interface is formulated as zero level set on a Cartesian grid. They considered the interface to be convected

passively by the flow, i.e. they prescribed the flow field and solved the surfactant dynamics on the interface without

feedback to the flow field.

With respect to its importance for realistic long-time simulations and for accuracy reasons, the surfactant-mass

conservation property was of special interest in subsequent works. James and Lowengrub [9] presented an fully cou-

pled, axisymmetric, incompressible Navier-Stokes solver based on the ”volume of fluid” (VOF) method and simulated

insoluble surfactant dynamics on a moving interface. Different from previous works, they tracked the surfactant mass

instead of solving the evolution equation for the concentration. Also, the surface area is tracked in this method instead

of a reconstruction from the volume fraction. As consequence, for long-time simulations and strong interface defor-

mations the reconstruction of the interface might be inconsistent with both the volume fraction and the surface area.
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Xu et al. [10] used a level-set method for interfacial Stokes flows to investigate the effect of insoluble surfactants on

single drops and droplet interactions. Conservation of surfactant material on the interface was enforced numerically

by a rescaling operation, since the method itself was not formulated in conservative variables. Recently, Lai et al.

[11] proposed an immersed-boundary method to simulate the interfacial problems with insoluble surfactant. Their

main achievement is a new discretization for the surfactant concentration equation and a Lagrangian tracking of the

interface, which allows for numerical conservation of the total mass of surfactant.

An important increase of considered complexity in the contaminated and moving interface problem was achieved

by Zhang et al. [12]. They solved the fully coupled flow field and surfactant dynamics on the interface and in the

bulk phase. The flux of surfactant on the interface was assumed to be balanced by adsorption and desorption. But this

front-tracking method does not conserve the total mass of surfactant. Muradoglu and Tryggvason [13] also used the

front-tracking method to simulate interfacial flows with soluble surfactant, but assumed that the mass transfer between

the bulk phase and the interface occurs within a thin adsorption layer. They considered the axisymmetric-symmetric

motion and deformation of a viscous drop moving in a circular tube and demonstrated first-order convergence of the

surfactant mass error.

In this article, we present a numerical method that includes all main relevant surfactant dynamics in an incompress-

ible Navier-Stokes solver based on the smoothed particle hydrodynamics (SPH) method. This Lagrangian formulation

for multiphase problems requires no special interface capturing or tracking and can handle complex geometries as well

as topology changes. We introduce the surfactant dynamics in conservative form and use mass fluxes to consider the

exchange of surfactant between the interface and the bulk phase. Within the thin interface layer, we solve a diffu-

sion equation for the surfactant, and due to our Lagrangian method advection is naturally included. Furthermore, we

use different constitutive equations for the surface-tension correlation to demonstrate the general applicability of our

method. We validate the method by comparisons with analytic solutions and grid convergence studies and show the ex-

act conservation of surfactant mass on the interface and in the bulk phase. Finally, we study some complex multiphase

problems such as the oscillating bubble experiment, the bubble deformation in shear flow and the Marangoni-force

driven bubble.

In the next section, the governing equations for the flow field and the surfactant dynamics are presented, and the

numerical algorithm summarizing also the main aspects of the SPH particle method is described in Section 3. The

diffusion model in the bulk phase as well as on the interface and the coupling between them is validated and tested in

Section 4. Some complex simulations are presented in Section 5 and finally, concluding remarks are given in Section

6.
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2. Governing equations

The isothermal Navier-Stokes equations are solved in a moving Lagrangian frame

dρ
dt

= −ρ∇ · v , (1)

dv
dt

= g +
1
ρ

[
−∇p + F(ν) + F(s)

]
, (2)

where ρ, p, v, and g are material density, pressure, velocity and body force, respectively. F(ν) denotes the viscous

force and F(s) is the interfacial surface force.

In SPH, incompressible flow is usually modelled by the weakly-compressible approach, in which a stiff equation

of state (EOS) is used to relate the pressure to the density, i.e.

p = p0

(
ρ

ρ0

)γ
+ b , (3)

with γ = 7, the reference pressure p0, the reference density ρ0 and a parameter b. These parameters and the artificial

speed of sound are chosen following a scale analysis presented by Morris et al. [14] which determines the threshold

of the admissible density variation.

The viscous force F(ν) then simplifies to the incompressible formulation

F(ν) = η∇2v , (4)

where η is the dynamic viscosity. Following the continuum-surface-tension model (CSF), the surface force can be

expressed as the gradient of the surface stress tensor with the surface tension coefficient α

F(s) = ∇ · [α (I − n ⊗ n) δΣ] = − (ακn + ∇sα) δΣ . (5)

The Capillary force ακnδΣ is calculated with the curvature κ, the normal vector of the interface n and the surface delta

function δΣ. This expression describes the pressure jump condition normal to an interface. In case of surface tension

variations along the interface (e.g., due to non-uniform temperature or surfactant concentration) the Marangoni force

∇sαδΣ results in a tangential stress acting along the interface (∇s is the surface gradient operator).

The evolution of surfactant on the interface is governed by an advection-diffusion equation with a source term

accounting for the surfactant transport between the bulk and the phase interface, e.g. adsorption and desorption,

dΓ

dt
= ∇s · Ds∇sΓ + Ṡ Γ, (6)

where Γ, Ds and Ṡ Γ are the interfacial surfactant concentration, the diffusion coefficient matrix (in case of isotropic
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diffusion Ds = Ds · I) and the source term, respectively.

After integration over the domain, eq. (6) gives the variation of the total mass ms of the interfacial surfactant

dms

dt
=

1
dt

∫

V
ΓδΣdV =

∫

V
∇s · Ds∇sΓδΣ dV +

∫

V
Ṡ ΓδΣ dV. (7)

The source term Ṡ Γ specifies the surfactant mass flux between the bulk phase and the interface. As widely used in

the literature, the transport of surfactant is assumed to follow Langmuir kinetics (see Borwankar and Wasan [15])

Ṡ Γ = k1Cs

(
Γ? − Γ

)
− k2Γ , (8)

where k1 and k2 are the adsorption and desorption coefficients and Cs is the volumetric concentration of surfactant in

the fluid phase immediately adjacent to the interface. The maximum equilibrium surfactant concentration is given by

Γ?.

Assuming that each surfactant molecule can move freely in the bulk phase, the transport of surfactant can be

described by the advection-diffusion equation

dC
dt

= ∇D∞∇C . (9)

Here, D∞ denotes the bulk diffusion coefficient and C is the volumetric surfactant concentration in the liquid. After

integration over the domain the rate of change of the total surfactant mass in the liquid Ms is obtained by

dMs

dt
=

∫

V
D∞∇2C dV −

∫

V
Ṡ ΓδΣ dV. (10)

The second term on the right side of eq. (10) is equal to the second term on the right hand side of eq. (7), hence

ensures global mass conservation.

To close our model, we relate the interfacial surfactant concentration Γ to the surface-tension coefficient α by a

constitutive equation. In this paper, the model of Otis et al. [16] defined by two piecewise linear functions is used

α (Γ) =



α0 +
(
α? − α0

) Γ
Γ?
, Γ ≤ Γ?

α? − α2

(
Γ
Γ?
− 1

)
, Γ? < Γ ≤ Γmax .

(11)

In eq. (11), α0 is the reference surface tension of the clean surface and α? is the reduced surface tension at the

maximum equilibrium surfactant concentration Γ?. The second part of the function is defined up to the maximum

possible surfactant concentration Γmax where the surface tension α changes proportionally with factor α2 to the non-

dimensional concentration Γ/Γ?. Note that the use of other relations, such as the Frumkin isotherm or the Langmuir

model [12, 7, 17, 18], is straightforward.
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The governing equations are nondimensionalized using reference values for the velocity u0, the length scale l0, the

density ρ0 and the bulk concentration C∞. The non-dimensional characteristic numbers are

Re =
ρ0u0l0
η

, Ca =
ηu0

α0
, Bo =

ρgl02

α0
, (12)

Pes =
u0l0
Ds

, Pe∞ =
u0l0
D∞

, Da =
Γ?

C∞l0
, (13)

where Re, Ca, Bo, Pes, Pe∞ and Da are the Reynolds number, the capillary number, the Bond number, the Peclet

number based on Ds, the Peclet number based on D∞ and the Damköhler number [13].

3. Numerical method

The governing equations are discretized using the multi-phase SPH method of Hu and Adams [1]. Each particle

represents a Lagrangian element of fluid, carrying all local phase properties. With updating the positions of the parti-

cles, this method accounts for advection as the governing equations are formulated in terms of material derivatives.

3.1. Multi-phase flow solver

According to Hu and Adams [1], we calculate the density of a particle i each timestep from a summation over all

neighboring particles j

ρi = mi

∑

j

Wi j =
mi

Vi
. (14)

Here, mi denotes the particle mass, Wi j = W
(
ri − r j, h

)
is a kernel function with smoothing length h and Vi is the

volume of particle i. Based on the studies of Morris et al. [14], we use the quintic spline function. This summation

allows for density discontinuities and conserves mass exactly.

The pressure term in the momentum equation is approximated as

dv(p)
i

dt
= − 1

ρi
∇pi = − 1

mi

∑

j

(
V2

i pi + V2
j p j

) ∂W
∂ri j

ei j , (15)

with the weight-function gradient ∂W
∂ri j

ei j = ∇W
(
ri − r j

)
. Note that this form conserves linear momentum exactly

since exchanging indices i and j in the sum leads to an opposite pressure force. The viscous force is derived from the

inter-particle-averaged shear stress with a combined viscosity. A simplification for incompressible flows gives

dv(ν)
i

dt
= νi∇2vi =

1
mi

∑

j

2ηiη j

ηi + η j

(
V2

i + V2
j

) vi j

ri j

∂W
∂ri j

, (16)

where νi = ηi/ρi is the local kinematic viscosity of particle i, vi j = vi − v j is the relative velocity of particle i and j

and ri j =
∣∣∣ri − r j

∣∣∣ is the distance of the two particles.
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The calculation of the interface curvature to determine the surface tension can be avoided. For this purpose, in the

continuous surface force model (CSF) the surface force is rewritten as the gradient of a stress tensor. The gradient of

the color function ci is used as approximation of the surface delta function δΣ . This color function defines to which

phase particle i belongs, i.e. ci = 0 for phase 1 and ci = 1 for phase 2. Since this function has a unit jump at the phase

interface, the particle averaged gradient ∇ci of particle i

∇ci =
1
Vi

∑

j

[
V2

i ci + V2
j c j

] ∂W
∂ri j

ei j (17)

has a delta-function-like distribution. Hence, the interface stress between phase 1 and 2 is obtained as

Π
(s)
i = αi

1
|∇ci|

(
1
d

I|∇ci|2 − ∇ci∇ci

)
, (18)

where d denotes the spatial dimension and α is the surface tension coefficient between the phases 1 and 2. Finally, the

particle-averaged gradient of this stress term gives the particle acceleration due to surface tension

dv(s)
i

dt
=

1
mi

∑

j

∂W
∂ri j

ei j ·
(
V2

i Π
(s)
i + V2

j Π
(s)
j

)
. (19)

3.2. Surfactant kinetics

Using the color function to distinguish different phases in the system, particles with a non-vanishing color-function

gradient approximate the singularity at an interface as a narrow transition band, see Fig. 1.

[Figure 1 about here.]

Within this narrow band of particles, the governing equations for the interfacial phenomena (6) - (8) are solved locally

for each individual particle. Hence, using the color-gradient function as surface-delta function, an interfacial particle

i contributes to the interface area by

Ai = Vi |∇ci| (20)

(in two dimensions, Ai and Vi are the interface length and the particle area). Corresponding to the individual interface

area fraction, each particle carries a fraction of interfacial mass of surfactant msi. The evolution of the surfactant mass

fraction of a single particle due to adsorption and desorption is given by

dm(s)
si

dt
= ˙S Γi Ai =

[
k1C∞

(
Γ? − Γi

)
− k2Γi

]
Ai, (21)
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where the subscript (s) indicates the effects due to adsorption and desorption. To assure the numerical stability for

particles with small interface area, the interfacial surfactant concentration is calculated from a kernel average

Γi =

∑
j ms jWi j∑
j A jWi j

, (22)

where summation is on all neighboring interface particles, i.e. all neighboring particles which are within the narrow

transition band.

As we solve the surfactant equations in conservative form, the total mass of surfactant is conserved exactly. Due

to particle motion it may happen, that interface particles leave the transition band and transport surfactant material

away from the interface. In that case, the interfacial surfactant mass of this escaped particle is mapped back to the

remaining interface particles, see Appendix A.

3.3. Bulk diffusion

The diffusion in the bulk phase has a similar form as the viscous force in the momentum equation for an incom-

pressible flow. Hence, the SPH approximation of the diffusion equation in conservative form follows in analogy to eq.

(16) as
dMsi

dt
=

∑

j

2D∞iD∞ j

D∞i + D∞ j

(
V2

i + V2
j

) Ci j

ri j

∂W
∂ri j

, (23)

where Msi is the mass of surfactant in the bulk phase of particle i, D∞i and D∞ j are the bulk diffusion coefficients of

particle i and j and Ci j = Ci −C j is the concentration difference. Note that the average diffusion coefficient in eq. (23)

ensures the zero-flux condition between two phases if one diffusion coefficient is zero. Each time step, after updating

the partice surfactant mass and particle volume, the local bulk concentration is calculated from

Ci =
Msi

Vi
. (24)

3.4. Interfacial diffusion

Following Bertalmı́o et al. [19], the interfacial diffusion equation (6) can be expressed as

dΓ

dt
= ∇s · Ds∇sΓ =

1
|∇c|∇ · [PsDs∇Γ |∇c|] , (25)

where Ps = I − n ⊗ n is the operator, which projects the gradient of the surfactant concentration ∇Γ tangentially to

the interface (i.e. the surface gradient operator ∇sΓ). This formulation solves the interfacial diffusion on a surface

of a finite width and thus is well suited for the interfacial modelling within the smoothed particle hydrodynamics

framework.

Discretizing eq. (25) with SPH, we calculate the term in the brackets on the RHS (λ = PsDs∇Γ |∇c|) for each

particle and use the general SPH summation formula to calculate the divergence of λ. Finally, the material derivative
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of the interfacial surfactant mass fraction by interfacial diffusion is

dm(d)
si

dt
=

∑

j

(
λiV2

i + λjV2
j

) ∂W
∂ri j

ei j . (26)

Particles on the fringes of the interface transition band might have only one neighboring particle of a different phase.

Hence, the simple normalized color gradient could lead to a wrong approximation of the interface normal direction. As

a remedy, we calculate the normal vector by a weighted summation of the color gradients of the interfacial neighbors

j

ni =

∑
j ∇c jA j∣∣∣∑ j ∇c jA j

∣∣∣ . (27)

Here, the interfacial area fraction A j is used as weighing factor since the color gradient of the interface nearest particle

is a better approximation of the normal direction (see Sec. 4.2, Fig. 4(b)).

As a consequence of the finite transition region, the general SPH discretization does not everywhere give an

accurate estimate of the surfactant gradient. The neighbors of a particle adjacent to the interface do not all belong to

the interface and must therefore be excluded from the gradient calculation. Following Chen et al. [20], a corrected

gradient calculation at position xi yields

∇Γ (xi) =


∑

j

(
xi − xj

)
V2

j∇Wi jV j


−1

·
∑

j

(
Γi − Γ j

)
V2

j∇Wi jV j . (28)

This formulation is valid for all situations where a particle has at least two neighbors. The implementation of eq. (28)

is for both two and three dimensions straightforward since only a d × d matrix inversion has to be performed.

During time integration, due to particle motion in the transition band around the interface a non-uniform and

non-smooth surfactant concentration profile normal to the interface may develop. In the limit of an infinitely high

resolution, this unphysical effect vanishes as the width of the transition region tends to zero. Nevertheless, to increase

the accuracy especially for lower resolution simulations, we introduce a smoothing of the surfactant concentration

normal to the interface. Instead of using a reinitialization as presented by Sbalzarini et al. [21], we adopt the directed-

diffusion approach to introduce artificial normal diffusion within the transition band. For this purpose, eq. (25) is

extended with the artificial normal diffusion as

dΓ

dt
= ∇s · Ds∇sΓ =

1
|∇c|∇ · [PsDs∇Γ |∇c| + PnDn∇Γ |∇c|] , (29)

where Pn = n ⊗ n and Dn = DnI are the normal projection matrix and the normal diffusion coefficient matrix.

3.5. Coupling between the bulk phase and the interface

The evolution of surfactant on the interface and in the bulk phase is coupled by the source term Ṡ ΓA, thus global

conservation of mass is ensured. If one fluid phase is insoluble for surfactant but has an interface containing surfac-
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tant, a special treatment of its interface particles is needed. Physically, the bulk surfactant concentration Ck and the

interfacial surfactant concentration Γk of such a particle k are zero. But as these particles contribute to the surfactant

dynamics within the transition band, the bulk concentration must be extrapolated from the interface particles of the

adjacent phase. Accordingly, the calculated surfactant mass flux of these particles must be taken into account on the

opposite bulk particles. The mathematical formulation of this coupling is given in Appendix B.

3.6. Time-step criteria

The equations presented above are integrated in time with an explicit predictor - corrector scheme. All quantities

are updated in every substep. For stability reasons the maximum time step is chosen based on several time-step criteria

[22, 23], see Appendix C.

4. Validation

To validate our modeling and implementation of the diffusion effects and surfactant kinetics with SPH we consider

several two-dimensional test cases isolating each single effect. Provided that an analytic solution is available, we

compare our results and test for convergence.

4.1. Bulk diffusion

In a first test we calculate the diffusion of a scalar species in a bulk liquid phase. For the computational domain

we choose a square of fluid surrounded by solid walls with a length of lx = ly = 0.1 m in each direction. The diffusion

coefficient of the liquid phase is taken to be D = 4 · 10−6 m2/s. Using an initial exponential distribution of the

concentration field C (x, t)

C (x, t = 0) = exp
[− (x − x0)2

4DT0

]
, (30)

the analytic solution of the diffusion problem follows from

C (x, y, t) =
A√

t + T0
exp

[− (x − x0)2

4D (t + T0)

]
, (31)

where T0 = 1 s, A = 1kg m−3s1/2 and x0 = lx/2.

[Figure 2 about here.]

Fig. 2(a) shows the evolution of the concentration profiles at t = 1.5 and 3. The solid lines represent the exact

analytic solution and the symbols denote the results of a simulation with smoothing length h = 8.3̄ · 10−3. Even

though this resolution is relatively poor, the calculated profiles are in very good agreement with the analytic solution.

To evaluate the accuracy of our calculation quantitatively we define the error norm L1

L1 =

∑
j

∣∣∣∣C j −C
(
x j, t

)∣∣∣∣
C∞N

, (32)
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which is the normalized particle averaged deviation from the analytic solution. Here, N denotes the total number of

particles. In Fig. 2(b) the error norm L1 is plotted with respect to the smoothing length h. As expected, with increasing

resolution the error decreases and converges approximately with second order.

4.2. Surface diffusion

For validation of the surface diffusion model we calculate the temporal evolution of an initially non-uniformly

distributed surfactant concentration profile on an interface. We put a drop with radius R = 1 · 10−3 m into a liquid

environment (centered in a Cartesian coordinate system) and initialize the interfacial surfactant concentration with the

solution from Xu et al. [8] at t = 0

Γ (Θ, t) =
Γ∞
2

[
exp (−t) cos(Θ) + 1

]
. (33)

Here, Θ is the counterclockwise angle of the interface with respect to the x-axis.

[Figure 3 about here.]

Fig. 3(a) shows the prediction of the interfacial concentration profiles with our SPH-model compared to the

analytic solution at several timesteps. The calculations were performed with a dimensionless smoothinglength h = 0.5,

a surface diffusivity of D = 1 · 10−6 m2/s for both the tangential and normal diffusion and a maximum surfactant

concentration Γ∞ = 3 · 10−6 kg/m2. The calculated profiles only show very small discrepancies from the analytic

solution. These errors converge with about first order, see Fig. 3(b).

To clarify the influence of the interface-normal approximation, in a next step we neglect the diffusivity on the

interface (Ds = 0 m2/s) and simulate the surfactant concentration evolution on a steady air-water interface. Physically,

the profile is expected to remain at the initial condition. The left profile in Fig. 4(a) shows the surfactant profile after

t = 5 using the normalized color gradients as normal direction ni = ∇ci/ |∇ci|. The profile is not smooth and differs

strongly from the initial condition. This problem arises from the fact, that the particles are initially positioned on a

Cartesian grid and the that circular interface is not represented accurately. Consequently, the color gradients do not

represent the correct normal direction, which is shown in the left plot of Fig. 4(b). Note that the length of the vectors

is adjusted for clarity.

We solved this problem with the introduction of the averaged normal calculation with eq. (27). The corresponding

surfactant profile and normals are shown in the right plots in Fig. 4(a) and 4(b). The initial surfactant profile is

preserved and the normal diffusion does not introduce artificial surface diffusion.

[Figure 4 about here.]

4.3. Surfactant kinetics

Now we test our implementation of the interfacial surfactant transport and the coupling between the bulk phase

and the interface. For this purpose, the adsorption of surfactant molecules to an initially clean interface is investigated.
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A bubble of size R = 1 · 10−3m is exposed to a liquid phase with a constant surfactant concentration of C(x, t = 0) =

C0 = 1kg/m3.

Assuming the bulk phase to be very large and the diffusion process to be infinitely fast, the bulk surfactant con-

centration directly underneath the interface is constant. Thus, from eq. (8) using the parameters k1 = 1 kg/m3/s,

k2 = 0.1 · 1/s and Γ? = 0.005 kg/m3 an equilibrium surfactant concentration can be obtained as

Γeq

Γ?
=

k1C
k1C + k2

≈ 0.91 , (34)

where the adsorption and desorption rates balance each other, and the surfactant concentration remains constant. The

first line in Fig. 5(a) shows the result of a simulation of a fixed air bubble in a surfactant-rich water surrounding

(1 : D∞ = ∞). As a reference, the broken horizontal line shows the analytic equilibrium state.

[Figure 5 about here.]

Now we include diffusion effects, i.e. the surfactant kinetics from eq. (8) depend also on the local volume

concentration of surfactant at the interface Cr=R. The diffusion coefficient in the bulk liquid phase is set to D∞ =

1 · 10−6m2/s, which corresponds to a Peclet number of Pe∞ = 0.1 (using the velocity scale u∞ = l∞k2). The second

line in Fig. 5(a) shows the evolution of the interfacial surfactant concentration including the coupling with the liquid

phase (2 : D∞ = 10−6m2/s). The corresponding evolution of the bulk concentration in the subsurface region directly

underneath the interface is also plotted in this figure (3 : Cr=R, D∞ = 10−6m2/s). Since the adsorbed surfactant

material is taken from the liquid phase, the bulk concentration Cr=R decreases, and at the same time the interfacial

concentration Γ does not increase as fast as in the infinite diffusion case. From t ≈ 2 the bulk concentration increases

again, caused by diffusion of surfactant in the liquid phase and a reduced surfactant flux between the interface and

the bulk phase. The evolution of surfactant mass on the interface and in the liquid phase over time is shown in Fig.

5(b). As can be expected, with an increasing surfactant mass on the interface the surfactant mass in the liquid phase

decreases. The total amount of surfactant in the system is conserved.

5. Results and discussion

With the results presented above we have shown the validity and accuracy of our model. In the following, we

perform more complex two-dimensional simulations with coupled effects.

5.1. Oscillating bubble

Following Otis et al. [16], we simulate the dynamic surface tension of an air-water-like interface with surfactant.

As in this problem the densities of the two phases do not determine the evolution, we assume the ”air” and ”water”

phase to have a density ratio of 10 only to facilitate computation. The viscosities of the two phases are chosen such

12



that the ratio of the kinematic viscosities is comparable to the realistic case. Due to this smaller density difference, we

avoid too small timesteps and decrease the computational time, see Hu and Adams [1].

As in the experiment, an air bubble is exposed to a liquid environment containing surfactant molecules. Enforcing

an oscillation of the bubble, the dynamics of the surfactant transportation can be investigated. In our SPH method we

perform the bubble oscillation by changing the mass of the air particles. This resembles the blowing and suction of

air in the experiment. Consequently, the density of the particles changes and the pressure force drives the bubble to

change its size. Starting from a droplet with initial radius of rmax = 0.02 m at an equilibrium surfactant concentration

Γ? = 3 · 10−6kg/m2, the size of the air-water interface is oscillated sinusoidally with the period T and the evolution

of the surfactant concentration on the interface is calculated. In the first set of simulations we assume adsorption-

limited surfactant dynamics. Thus the bulk surfactant concentration is constant since the diffusion in the liquid phase

is considered to be infinitely fast. The surfactant dynamics from eq. (8) are extended to the insoluble and the squeeze-

out regime, see Otis et al. [16]. In the second regime ( Γ? ≤ Γ < Γmax) the interface is insoluble, i.e. the concentration

changes only by interface deformation,
dms

dt
=

d (ΓA)
dt

= 0 . (35)

Reaching the maximum surfactant concentration Γmax, the surfactant molecules are packed as tightly as possible in

the interface and further compression results in an squeeze-out of molecules back to the bulk phase.

Figure 6(a) shows the surface-tension loops for various adsorption depths k̃ = k1C/k2 at a Biot number of Bi =

k2T = 1 for the adsorption-limited case. At a very low adsorption depth the minimum possible surface tension is

never reached during an oscillation cycle. This is due to the fact, that in the bulk phase there are not enough surfactant

molecules available to accumulate at the interface. Increasing the adsorption depth, this limit is overcome and the

nearly-zero surface tension occurs in the loop. Furthermore, the hysteresis increases with increasing adsorption depth.

[Figure 6 about here.]

Morris et al. [24] showed that under some conditions ”pseudo-film collapse” occurs in the dynamic surface

tension loops. Similarly to the true film collapse at the lowest possible surface tension, in this case the surface tension

remains relatively constant near the equilibrium α? even though the interface is further compressed. As they showed

in their experiments, this is not a numerical artifact but a physically realistic behavior. Following the experimental

investigations, we have checked if our model recovers this phenomenon correctly. A variation of the Biot number at

a fixed adsorption depth is given in Fig. 6(b). As seen in the experiments, with increasing Biot number the maximum

occurring surface tension within the loop decreases. At very high desorption rates the ”pseudo-film collapse” is

observed.

Comparisons with experiments have shown, that under certain conditions the adsorption-limited model tends to

predict a wrong transient behavior, i.e. the assumption of a constant bulk surfactant concentration does not hold in

all situations. As a remedy, Morris et al. [24] consider the diffusion-limited surfactant dynamics. With this model
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they are able to reproduce the experimental observations of Schürch et al. [25] and get even better agreement with

the steady-state oscillations than with the adsorption-limited model. Using eq. (7) and (10), we can simulate with our

SPH method the fully coupled interfacial surfactant dynamics with the bulk diffusion. As an example, Fig. 7 shows

the concentration evolution in the bulk subsurface region directly underneath the interface and the surface-tension

loop for the dynamic cycling with the parameters Bi = 10, k̃ = 10, Da = 1 and Pe = 1. Due to the transient bulk

concentration available at the interface, the maximum surface tension in the loop increases as well as the minimum

surface tension decreases. Furthermore an increase of the hysteresis is observed. Our simulations confirm the findings

of Morris et al., who were the first to simulate the influence of the diffusion process in the bulk phase on the dynamic

cycling based on a one-dimensional model.

[Figure 7 about here.]

5.2. Drop in shear flow

We consider a circular drop in a shear flow with ρa = ρw = 1000 kg/m3 and λ = ηa/ηw = 0.01. Initially we

assume the interface to be clean of any surfactant and keep the surface tension coefficient constant during the whole

calculation. The drop of size R0 = 1 · 10−3m is located in the middle of a periodic rectangular channel of size

lx = ly = 8R0 with a wall velocity of ±u∞. In this case, the capillary number Ca and the Reynolds number Re are

redefined by the shear rate G = 2u∞/ly, i.e.

Ca =
GηR
α

, Re =
ρGR2

η
. (36)

Caused by the flow shear, the drop deforms to an ellipsoid balancing the viscous stresses and surface tension. As a

measure of deformation the parameter D = (a − b)/(a + b) is used, which is a ratio of the drop’s length a and width b.

[Figure 8 about here.]

Fig. 8(a) shows a snapshot of the simulation when Ca = 0.1 and Re = 1.0. The calculation was performed

with a non-dimensional smoothing length h = 0.25, i.e. a total of 9216 particles. The deformation parameter is

calculated with the least-square ellipse fitting method of Fitzgibbon et al. [26] using the interface particles to denote

the shape of the droplet. A comparison of the current calculated deformations and the analytic predictions using the

small-deformation theory suggested by Taylor [27] is plotted in Fig. 8(b). Even though we slightly overpredict the

deformation, the agreement is good. Comparable results are presented in Hu and Adams [1], who simulated the same

case but with a higher viscosity ratio of one.

[Figure 9 about here.]

Starting from the clean drop in a shear flow as a reference simulation, we consider now an initially circular droplet

in the presence of an insoluble surfactant on the interface. That means that the bulk surfactant concentration in the two
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phases vanishes everywhere for the entire simulation time and the interfacial surfactant mass is distributed only over

the particles within the transition band at the interface. The constitutive equation for the surface-tension coefficient α

as function of the surfactant concentration Γ reduces in this example to

α = α0

(
1 − β Γ

Γ?

)
, (37)

where β is a parameter. Figures 9(a) and 9(b) show the deformed interface and the velocity-vector plot at steady-state

for the case without surfactant (β = 0) and with insoluble surfactant (β = 0.5, Pe = 1) at Re = 1, Ca = 0.1 and

λ = 0.01. The deformation parameters for the two cases are calculated to be D = 0.107 and D = 0.130.

Considering an insoluble surfactant present on the interface, we observe an increase of the bubble deformation of

about 20%. The bubble inclination angle with respect to the x-axis at steady-state decreases slightly. The parameters

in eq. (37) are chosen such that initially the surfactant concentration and the surface tension for both the clean drop

and the insoluble case are the same. To study in more detail the influence of surfactants present on the interface of a

shearing drop, we consider the tangential velocity along the interface and the surfactant profile. Figure 10 shows these

distributions against the polar angle φ measured around the drop’s transverse diameter for the three simulated cases

of a clean interface (β = 0), a low diffusive (β = 0.5, Pe = 1.0) and a high diffusive (β = 0.5, Pe = 0.1) surfactant on

the interface.

[Figure 10 about here.]

The distribution of the surfactant concentration at steady-state forms two local maxima at the tips of the deformed

drop, see Fig. 10(b). With lower Peclet numbers (Pe = 0.1) surface diffusion of the surfactant becomes more

dominant and produces a nearly constant profile. Hence, the drop deformation and tangential velocity converge to the

clean interface results in the limit of an infinite surface diffusion.

Contrary to Lee and Pozrikidis [17], we do not observe any region where the tangential velocity of the clean

interface is negative, see Fig. 10(a). The drop rotates continuously in clockwise direction with a maximum nondi-

mensional tangential velocity of approximately one (nondimensionalized with ure f = GR). Including surfactant effects

with Pe = 1, the oscillations of the tangential velocity around GR/2 decrease. Comparing the velocity vector plots in

Fig. 9 shows how the diffusive surfactant on the interface affects the flow field within the droplet and in the bulk phase.

The drop with the contaminated interface rotates more like a rigid body with a continuous nearly uniform tangential

velocity, which is in agreement with the results of the surfactant enriched drop in a shear flow presented in [17].

From a Lagrangian point of view it is easy to explain, that the interface of a surfactant enriched insoluble drop in

a shear flow at steady-state necessarily has to rotate continuously in one direction. Assuming that there are regions on

the interface where the tangential velocity is negative, particles would move towards these stagnation points. As an

example for such a flow situation we refer to Lee and Pozrikidis [17] (Fig. 8 and 9), who showed the streamline pattern

for a clean drop in a shear flow with four stagnation points. As a consequence, particles would leave the interface
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band at these regions. Without diffusion, the insoluble surfactant is transported along the interface only by advection.

Whenever a particle leaves the interface region, the insoluble surfactant must stay on the interface. Hence, finally

all surfactant would be concentrated at the point where the particles leave the interface region. Since this singularity

is incompatible with a stable drop or ellipsoid, this flow pattern cannot exist when the interface contains insoluble

surfactant.

5.3. Marangoni-force driven motion

Now we test our method for the Marangoni-force driven motion of a bubble. Thus, we consider a bubble with the

initially non-uniform distributed surfactant concentration on the interface given by Γ = Γ0 (1 + tanh (4 (Θ/π − 0.5))).

The density and viscosity ratio of the initially quiescent bubble and bulk phase are both ρ1/ρ2 = λ = 1. The diffusion

coefficient Ds is set to zero, i.e. the Peclet number is infinite. A similar test case but in three dimensions and with a

different density and viscosity ratio is presented in Zhang et al. [12].

[Figure 11 about here.]

According to eq. (37) and the variation of surfactant along the interface, the interfacial surface tension gradient∇sα

is non-zero and produces a motion of the bubble caused by the Marangoni effect. Interfacial particles at low surface

tension are forced to advect towards regions of higher surface tension smoothing out the surfactant concentration

distribution. On the left side of Fig. 11(a) the initial interface position and the final steady-state location of the bubble

particles are shown. As the bottom part of the bubble contains initially more surfactant, the Marangoni force induced

motion along the interface produces a counterclockwise rotation in the bubble phase and thus moves down. The

vector plot of the velocities of the particles within the bubble (see right plot in Fig. 11(a)) shows the counterclockwise

rotation of the interface and the downward motion of the drop center. The corresponding surfactant profiles along

the interface during the bubble motion are shown in Fig. 11(b). The surfactant is transported along the interface by

advection resulting in lowering the maximum concentration and producing an uniform profile. Hence, the surface

tension finally is constant over the interface and the bubble rests at a steady position.

6. Concluding remarks

We have developed a fully Lagrangian particle method for simulating incompressible interfacial flows with sur-

factant dynamics. The surfactant transport model accounts for exchange between the bulk phase and the interface

(adsorption, desorption, squeeze-out) as well as diffusion on the interface and within the bulk phase. In our numerical

scheme, the different transportation phenomena can be considered simultaneously or separately, depending on the

problem statement. In the present model the mass of surfactant is conserved exactly in the fluid phases and on inter-

faces. We have shown the validity of our method by several convergence studies and have performed several more

complex simulations demonstrating the capabilities of this grid-free method. In this work we have only presented
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results of two-dimensional examples. The extension of the SPH model for three-dimensional flows along the lines

given in this paper is straightforward.
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A. Appendix A

To ensure exact conservation of surfactant mass in the system, we must treat the particles k that leave the interface

transition band in a special way. Their fraction of interfacial mass of surfactant msk is mapped back to a particle i that

remains within the transition band by

∆mmap
si =

∑

k

msk
Wki∑
I WkI

, (38)

where the smoothing function Wki serves as weighting factor. To satisfy the consistency condition, this weight is

normalized with
∑

I WkI . Here, the summation is on all particles I of the intersection of k’s neighbors and the remaining

interface particles.

B. Appendix B

The mass exchange between an interface particle k (of an insoluble phase ) and a bulk particle i (of the opposite

soluble phase) is represented as

∆

(
dMsi

dt

)
= −

∑

k

Ṡ Γk Ak
Ai∑
l Al

, (39)

where the fraction of the interface area Ai is used as weight. For consistency this weight is normalized with the sum of

the fractions of the interface areas
∑

l Al. Here, the summation is on all particles l, which are in the surfactant soluble

phase and in the neighborhood of particle k (within the support domain of the kernel function).

C. Appendix C

Within the weakly-compressible SPH formulation, following [22], [23] and [1] the time-step must satisfy the

CFL-condition (Courant-Friedrichs-Lewy condition) based on the maximum artificial sound speed and the maximum

flow speed

∆t ≤ 0.25
h

cmax + |umax| , (40)
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the viscous condition

∆t ≤ 0.125
h2

ν
, (41)

the body force condition

∆t ≤ 0.25
(

h
|g|

)1/2

, (42)

the surface tension condition

∆t ≤ 0.25
(
ρh3

2πα

)1/2

(43)

and the diffusion condition

∆t ≤ 0.125
h2

D
. (44)
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Figure 1: Sketch of the transition band at an interface with the surface delta function δΣ and particles of two different
phases.

21



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
on

ce
nt

ra
tio

n 
[-

]

x [-]

Analytic Solution
t = 0.0
t = 1.5
t = 3.0

(a)

1e−05

1e−04

1e−03

1e−02

 0.001  0.01  0.1

L 1
 [−

]

Resolution h [−]

T = 3.0
2nd order

(b)

Figure 2: (a) Concentration profiles of bulk diffusion at t = 0.0, 1.5 and 3.0; solid line: analytic solution, symbols:
SPH results. (b) L1 error with respect to smoothing length h for the bulk diffusion test (see Sec. 4.1).
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Figure 3: (a) Concentration profiles of interfacial diffusion at t = 0, 0.5, 1.0 and 2.0; solid line: analytic solution,
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Figure 7: Comparison between the adsorption-limited (D → ∞) and the diffusion-limited model (D = 4 · 10−3m2/s).
(a) Evolution of the surfactant concentration in the bulk subsurface region directly underneath the interface. (b)
Corresponding surface-tension loops.
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Figure 8: (a) Positions of air particles (black dots) and shearing water particles (open circles) for Ca = 0.1, Re = 1.0
and λ = 0.01 (b) Drop deformation parameter D over capillary number Ca for λ = 0.01.
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Figure 9: Interface position and velocity vector plot of a drop in a shear flow at Re = 1, λ = 0.01 and Ca = 0.1. (a)
Clean droplet (β = 0.0). (b) Insoluble surfactant on the interface (β = 0.5, Pe = 1).
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Figure 10: Effect of surfactant on the steady deformation of a drop in a shear flow at Re = 1, λ = 0.01 and Ca = 0.1.
(a) Distribution of tangential velocity for the cases β = 0., β = 0.5, Pe = 0.1 and β = 0.5, Pe = 1.0. (b) Distribution
of the interfacial surfactant concentration for Pe = 0.1 and Pe = 1.
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Figure 11: Interface positions (left) and velocity field (right) for an initially non-uniform surfactant covered bubble
moving due to the Marangoni effect.
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