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Current smoothed particle dynamics (SPD) discretizations for macro-scopic and meso-scopic vis-
cous flows usually do not conserve angular momentum. Angular-momentum conservation, how-
ever, potentially stabilizes the solution for long-time simulations. We show that a simple angular-
momentum conservative formulation of the viscous force, which was proposed previously based
on empirical findings, can be derived theoretically under the condition of incompressible flow. The
properties of this formulation are asserted by numerical simulations of two dimensional Taylor-Green
flow.

PACS numbers:

I. INTRODUCTION

The smoothed particle dynamics (SPD) is a fully La-
grangian, grid free method in which a smoothing kernel
is introduced to approximate functions and their spa-
tial derivatives from the interactions between neighbor-
ing particles. It is referred to as smoothed particle hy-
drodynamics (SPH) when simulating macro-scopic flows
[10, 14, 16], and smoothed dissipative particle dynamics
(SDPD) when simulating meso-scopic flows [7]. In SPD,
the discretization of pressure usually conserves both lin-
ear and angular momentum locally. The discretization of
the viscous force, however, usually does not strictly con-
serve angular momentum [3, 7, 9, 12]. Since the approxi-
mation of the random force (due to thermal-fluctuations)
in SDPD is derived based on the viscous force, it usually
does not conserve angular momentum either. We address
angular-momentum conservation in the letter since it is
potentially important to stabilize long-time simulations
with SPD [17].

One approach is to correct SPH by a nested applica-
tion of the gradient approximation to obtain global con-
servation of linear and angular momentum [1, 2, 15, 22].
Cleary et al. [4, 5] use artificial viscosity in inviscid SPH
[17] to model real viscosity with a calibrated parameter.
As the discretization is in compact and anti-symmetric
form, linear and angular momentum are conserved both
locally and globally. Since numerical experiments are
ambiguous concerning the generality of this empirical pa-
rameter [4, 6, 19], it is difficulty to determine the condi-
tions under which the particular parameter value is valid.
In this letter we will derive a simple angular-momentum
conservative formulation where the above mentioned pa-
rameter can be derived if the flow is incompressible. Sub-
sequently, a random force for SDPD is derived by the
fluctuation-dissipation theorem. The properties of this
formulation are also asserted by numerical simulations of

two dimensional Taylor-Green flow.
II. METHOD

We consider the isothermal incompressible Navier-
Stokes equations on a moving Lagrangian frame

dρ

dt
= 0 or ∇ · v = 0 (1)

dv
dt

= −1
ρ
∇p + ν∇2v, (2)

where ρ, p, and v are material density, velocity and pres-
sure, respectively, ν = η/ρ is the kinematic viscosity.

The smoothing function for particle i is given by

χi(r) =
W (r− ri, h)∑

k W (r− rk)
=

Wi(r)
σ(r)

(3)

where ri is the position of particle i, k = 1, ..., N , N is
the total particle number, and h is the smoothing length
[12]. Wi(r) is a generic shape function known as the SPH
smoothing kernel which is radially symmetric and has
the properties

∫
W (r − r′, h)dr′ = 1 and limh→0 W (r −

r′, h) = δ(r−r′). σ(r) is a measure of the particle number
density which has a larger value in a dense particle region
than in a dilute particle region. The volume of a particle
is obtained through the following integral over the entire
domain

Vi =
∫

χi(r)dr ≈ 1
σi

, (4)

which shows that σi = σ(ri) is approximately the inverse
of the particle volume, i.e. the specific volume. For a
smooth variable ψ(r), two forms of discretizations for the
spatial derivatives are given in Ref. [12]. The second of
these forms is



2

∇ψi = − 1
Vi

∫
ψ(r)∇χi(r)dr (5a)

≈ − 1
Vi

∑

j

ψij

∫
1

σ(r)2
[Wj(r)∇Wi(r)−Wi(r)∇Wj(r)] dr (5b)

≈ σi

∑

j

(
1
σ2

i

+
1
σ2

j

)
ψij

∂W

∂rij
eij (5c)

= σi

∑

j

Aijψijeij . (5d)

Here ∂W
∂rij

eij = ∇W (ri−rj), and ∂W
∂rij

≤ 0, ri−rj = rij =
rijeij , and eij is the normalized vector from particle i to

j. Aij =
(

1
σ2

i
+ 1

σ2
j

)
∂W
∂rij

< 0. Note that Aij depends
on the particular choice of the SPH smoothing kernels
Wi(r) in Eq. (3). ψij = ψ(ψ(ri), ψ(rj)) is an inter-
particle-averaged value. A simple inter-particle average
is, e.g.,

ψij =
1
2
[ψ(ri) + ψ(rj)], (6)

which will be used in the following. Note that Eq. (5)
gives a particle approximation of the gradient of ψ(r). If
ψ(r) is a vector, the particle approximation of the diver-
gence of ψ(r) is obtained by taking the trace of Eq. (5),
that is

∇ · ψi = −
∫

ψ(r) · ∇Wi(r)dr ≈ σi

∑

j

Aijψij · eij . (7)

A. Viscous force in incompressible SPH

According to Hu and Adams [12], the equation of mo-
tion Eq. (2) can be discretized by

dvi

dt
= − 1

mi

∑

j

Aijpijeij +
η

mi

∑

j

Aij
vij

rij
(8)

where mi is the mass of particle i, pij = 1
2 (pi + pj) and

vij = vi − vj . While the viscous-force term (the third
term) conserves linear momentum, it does not strictly
conserve angular momentum. Cleary et al. [4, 5] dis-
cretize the viscous-force term in a fashion similar to ar-
tificial viscosity in inviscid SPH [17]

Fi = ζ
η

mi

∑

j

Aij
eij · vij ,

rij
eij , (9)

with an arbitrary positive parameter ζ. This formula-
tion conserves linear and angular momentum locally and
globally. Cleary [4] found empirically that ζ ≈ 4.963
by calibrating with incompressible flows using a weakly
compressible SPH [18]. Cummins and Rudman [6] find
ζ ≈ 4.17 for incompressible SPH simulation of two-
dimensional flows employing a pressure projection.

We present here a theoretical argument for ζ = d + 2
in Eq. (9) where d is the spatial dimension. Español &
Revenga [7] and Monaghan [19] propose an approxima-
tion for second derivatives at the locus of particle i based
on the following identity which is valid for an arbitrary
smooth function φ(r)

(∇∇φ)i =
∫

φi − φ(r)
ri(r)

[(d + 2)∇Wi(r)ei(r)− I∇Wi(r) · ei(r))] dr +O(h2), (10)

where ei(r) and ri(r) are the unit vector and distance
from particle i to a coordinate r, respectively. Comparing
Eq. (10) to Eqs.(5) and (7) by setting ψ(r) to

φi − φ(r)
ri(r)

(d + 2)ei(r) and
φi − φ(r)

ri(r)
ei(r)

respectively, and on using Eq. (6), one finds the relation

(∇∇φ)i ≈ σi

2

∑

j

Aij
φij

rij
[(d + 2)eijeij − I] . (11)

For φ(r) = v(r) as the velocity field, one obtains from
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Eq. (11) by taking the trace of the tensor operator ∇∇
(∇2v)i ≈ σi

∑

j

Aij
vij

rij
, (12)

which returns a second-order discretization of the viscous
force term in Eq. (8). Similarly, taking the trace of the
tensor ∇v in the left-hand side of Eq. (11), one obtains

(∇∇ · v)i ≈ σi

2

∑

j

Aij
1
rij

[(d + 2)vij · eijeij − vij ] .

(13)
When the left-hand-side of Eq. (13) vanishes due to a
divergence-free velocity field, then follows from the right-
hand side together with Eq. (12) that the discrete viscous
force of Eq. (8) is approximately equivalent to Eq. (9)
with the parameter ζ = d + 2, which proves our result.
The parameter ζ = d + 2 is close to the empirical re-
sult of Cummins & Rudman [6] (in two dimensions). As
Eq. (13) is contains no further implicit dependence on
Aij , the parameter ζ is also formally independent of the
chosen smoothing kernels.

Note that Eq.(13) also implies an estimate for numer-
ical errors committed by replacing the viscous term in
Eq. (8) by Eq. (9). Eq. (10) is a second-order accu-
rate approximation of second derivatives, and contains
an integral which needs to be evaluated from a particle
approximation. The accuracy of this particle approxi-
mation depends on the number particles used for evalua-
tion. For an incompressible SPH simulation the number
of neighboring particles within a kernel radius does not
change (due to incompressibility) during time evolution
and thus is essentially fixed by the initial choices for the
ratio of smoothing length and the neighboring particle
distance α = h/∆ and for the kernel radius. Therefore,
it can be expected that this particle-approximation er-
ror of Eq. (10) would not change much with the overall
number of particles and with viscosity. This fact can ex-
plain discrepancies between the carefully calibrated and
the theoretical value for the parameter [4, 6] as we will
show below. If we consider the kernel radius of [6] which
is 25% larger than that of [4], and α = 1.3 is larger as
well, the particle approximation of the integral is more
accurate in [6] than in [4] so that the calibrated param-
eter is closer to the theoretical result for [6] than of [4].
Since the approximation error is determined by α and the
kernel radius and not by resolution and viscosity, both
calibrating simulations find that ζ is independent on res-
olution and viscosity since α and kernel radius remain
unchanged.

B. Incompressible SDPD

With Eqs. (8) and (9) the equation of motion Eq. (2)
can be discretized and written as an equation for particle
momentum as

Ṗi = −
∑

j

Aijpijeij + ηζ
∑

j

Aij
eij · vij

rij
eij . (14)

Note that the pressure term is reversible and conserves
kinetic energy and that the viscous force reflects the irre-
versibility of the flow. In the original DPD method [11]
the momentum equation for a particle is

Ṗi =
∑

j 6=i

[
FC

ij + FD
ij + FR

ij

]
eij , (15)

where FC
ij , FD

ij and FR
ij are the magnitudes of conser-

vative force, dissipative force and random force, respec-
tively. On can see that the pressure force and the viscous
force in Eq. (14) can be written analogously to the con-
servative force and the dissipative force in Eq. (15), i.e.

FC
ij = −Aijpij and FD

ij = −η

(
−ζ

Aij

rij

)
(eij · vij) .

(16)
A random force for Eq. (14) can also be formulated by
simply following the original DPD formulation. As the
amplitude of dissipative force and random force are given
according to the Fluctuation-Dissipation Theorem [8] the
magnitude of the random force can be obtained as

FR
ij = (2kBTη)1/2

(
−ζ

Aij

rij

)1/2

ξij , (17)

where ξij is a Gaussian variable with zero mean and a
variance equal to ∆t−1, ∆t is the time step, which is
defined by the underlying Wiener process, and kBT is
the Boltzmann temperature of the system. Note that
this random force also conserves both linear and angular
momentum. The current expression is simpler than pre-
vious formulations as only one Wiener process per par-
ticle pair needs to evaluated unlike for previous SDPD
formulations [7, 12].

Note that the pressure terms in the conservative force
are obtained by enforcing a divergence-free condition on
the velocity [6]. Consequently, the conservative force
does not relate to an equation of state, and the incom-
pressible SDPD has no intrinsic numerical viscosity due
to artificial compressibility [21].

C. Numerical validation

A simulation of two-dimensional viscous Taylor-Green
flow is provided to validate our viscous force formulation.
The Taylor-Green flow is a periodic array of vortices with
velocities

u(x, y, t) = −Uebt cos(2πx) sin(2πy)
v(x, y, t) = Uebt sin(2πx) cos(2πy) (18)

where b = − 8π2

Re . The computation is performed in on a
periodic domain 0 < x < 1 and 0 < y < 1. The initial
particle velocity is assigned according to Eq. (18) with
t = 0 and U = 1. A quintic spline kernel [20] is used
for W (r). Incompressibility is enforced by a projection
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FIG. 1: Taylor-Green problem with Re = 100: (a) comparison
between simulated vorticity profile (solid line) and analytical
solution (dash line) at time t = 1, (b) simulated decay of the
maximum velocity with different α.

SPH employing a diagonal conjugate gradient method for
solving the Poisson equation [13].

In order to study the errors introduced by the approxi-
mation of integration in Eq. (13), first the parameter ζ is
set to the theoretical value 4. Simulations are performed
for Re = 100 with 900, 1600, 2500 and 3600 particles.
The smoothing length is fixed at h = 1

30 which gives for
the ratio of smoothing length and neighboring particle
distance with values α = 1, 2, 3 and 4, respectively. Fig-
ure 1a shows the calculated vorticity at t = 1 with 2500
particles. It can be observed that the theoretical solution
is quite well recovered with the maximum error arising

near the vorticity peaks. Figure 1b shows the time evo-
lution of the maximum velocity of the flow. It can be
observed that the predicted Reynolds number is always
slightly larger than the theoretical value. However, it
can also be observed that the predicted Reynolds num-
ber converges to the theoretical value with increasing α,
supporting our argument at the end of Section II A. For
α = 4 the relative error decreases to less than 1%.

In most of SPH simulations α is chosen between 1 and
2, so that the particle approximation of the integral in
Eq. (13) is rather inaccurate. Since these errors for fixed
α and smoothing length do not change with the over-
all particle number the parameter ζ can be calibrated to
compensate these errors without inferring a strong de-
pendence on resolution and viscosity.

In order to study the convergence properties for cali-
brated ζ the same case as above is simulated with 900,
3600 and 14400 particles, respectively. By using a fixed
α = 1, the smoothing lengths are given as h = 1

30 , 1
60 and

1
120 with increasing resolution. The parameter ζ = 4.28
is calibrated with a simulation at the lowest resolution.
Note that this value is just in between those of [4] and
[6] because for our setup the number of particles within
a kernel radius is less than that in [4] but more than that
in [6]. We measured the overall accuracy by L1 errors

L1 =
∑N

i=1

∣∣Uex − USPH
∣∣

∑N
i=1 |Uex|

(19)

where U and Uex are the simulated and theoretical veloc-
ities, respectively, N is the number of particles. The con-
vergence of the solution with increasing resolution (over-
all number of particles) is shown in Fig. 2a.

In order to study the influence of viscosity, we sim-
ulated the cases for Re = 10, 50, 150 and 200 with
3600 particles by using the above calibrated parameter
ζ = 4.28. Figure 2b shows a comparison between the
predicted and the theoretical temporal evolution of the
maximum velocity. The maximum relative error is less
than 5%, which suggests only a weak dependence of ζ
on viscosity. Also, we observe that for Reynolds num-
bers larger than the calibration Reynolds number the
predicted Reynolds number is smaller than the theoret-
ical value, and vice versa for Reynolds numbers smaller
that the calibration value.
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FIG. 2: Taylor-Green problem with different resolutions and
Reynolds numbers: (a) history of L1 errors, (b) decay of the
maximum velocities.
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