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Abstract

Smoothed Dissipative Particle Dynamics (SDPD) is a novel coarse-grained meso-

scopic method for the simulation of complex fluids representing the effect of micro-

scopic scales by a stochastic process. It has some advantages over more traditional

particle-based methods but, on the other hand, shares some problems common to

particle-based simulations of microfluidic systems. In particular a prohibitive sta-

bility constraint prevents its application for Schmidt numbers of O(103) which is

typical for liquids.

In the present paper we propose an implicit numerical scheme for SDPD that

allows to increase significantly the time-step size, and thus to perform simulations at

significantly larger Schmidt numbers than was possible previously. Simulations using

the new method show close agreement with reference scheme results for Couette

and Poiseuille flow. Benchmark results for temperature control (i.e. recovery of

macroscopic temperature) are also presented. The radial distribution function of

Preprint submitted to Elsevier 29 September 2009



the mesoscopic model liquid is found to be in agreement with experimental results.

1 Introduction

Smoothed Dissipative Particle Dynamics (SDPD) [1], has been introduced as

a generalization of the Smoothed Particle Hydrodynamics method (SPH) [2]

for describing mesoscopic fluid flows. It is a modification of Dissipative Parti-

cle Dynamics (DPD), another popular mesoscopic particle-based scheme [3],

consistent with the macroscopic flow. SDPD has the following specific features:

• the method is based on a formally second-order in space discretization of

the Navier-Stokes equations;

• transport coefficients can be stated as input parameters and are not an

indirect result of other parameters as in DPD;

• hydrodynamic behavior is obtained at length scales of the same order as the

particle dimension and no further coarse-graining assumption is required;

• it produces the correct scaling of thermal fluctuations depending on the

fluid particle size.

However, despite the favorable properties mentioned above, SDPD shares some

disadvantages with DPD. In the present paper we address one of these issues,

namely the so-called Schmidt number problem.

The Schmidt number is defined as the ratio of momentum diffusivity (viscos-

ity) and mass diffusivity.

Sc =
µ

Dρ
(1)

where µ is the dynamic viscosity and D is the molecular diffusion coefficient

of a specific liquid. In [4] it has been pointed out that, in order to achieve a
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realistic liquid behavior, it is essential to realize Schmidt numbers Sc of O(103)

in the simulations. However, for DPD simulations the typically achieved Sc is

much smaller, reproducing conditions similar to that for gases rather than for

fluids, i.e. Sc ∼ O(1).

Peters [5] suggested that the self-diffusion coefficient D appearing in the def-

inition of the Schmidt number is a molecular diffusivity and therefore it is

an ill-defined quantity for coarse-grained systems. Accordingly, one would not

need to achieve realistically large Sc, but those conventionally obtained in DPD

may be sufficient to capture the hydrodynamic interactions correctly. For ex-

ample, Jiang et al. [6] found for the DPD simulation of polymer solutions that

already at low Schmidt numbers hydrodynamic interactions are recovered and

the correct polymer dynamics is obtained. Also SDPD simulations of a poly-

mer molecule suspended in Newtonian solvent with Sc ∼ O(1) produced the

correct static/dynamic scaling laws in agreement with the Zimm theory [7].

However in contrast with the previous findings, Symeonidis et al. [8,9] it was

observed that the agreement between simulation and experiments with respect

to the description of non-equilibrium properties of a DNA molecule undergo-

ing a shear flow improves when Sc approaches values for a liquid. Furthermore,

Vázquez et al. [10] show results for the diffusion properties of a colloid/polymer

for decreasing solvent Schmidt number (i.e. for increasing SDPD fluid-particle

resolution), suggesting that, to some extent, the fluid particle Schmidt num-

ber can be regarded as a measure for numerical convergence. The physical

interpretation of the solvent Schmidt number, however, is not the focus of the

current work. It is generally accepted that a realistic Schmidt number based

on the size of a suspended macromolecule/colloid is a well-defined quantity

and that its related diffusion time scales are generally much larger than the
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momentum diffusion time scales of the solvent liquid. The exact realization of

such conditions is important for quantitative comparisons of simulations with

realistic experiments.

As in SDPD all transport coefficients are specified a priori, a large Schmidt

number results in numerical stiffness: the stability constraints of current inte-

gration schemes results in huge overwhelming computational cost for large vis-

cosity. With current integration schemes the physically relevant mass-diffusive

time scales cannot be achieved. The objective of this paper is to extend an

implicit scheme [11,12], developed previously for DPD and SPH, to SDPD,

and allows to increase the time step significantly in comparison with standard

velocity-Verlet algorithms. No further assumption or modification of the phys-

ical model is required. In section 2 we briefly describe the SDPD method; in

section 3 the time step limitations typical for velocity-Verlet and Predictor-

Corrector schemes are discussed; in section 4 the new integration scheme is

presented; sections 5 and 6 are devoted to numerical examples for macroscopic

and microscopic flows.

2 Model

2.1 Mesoscopic flow modeling

The flow of an isothermal Newtonian solvent can be described by the Navier-

Stokes equations written in a Lagrangian reference frame
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dρ

dt
=−ρ∇ · v

dv

dt
=−1

ρ
∇p +

η

ρ
∇2v (2)

where ρ is the material density, v is the velocity, p is the pressure and η is

the dynamic viscosity. An SPH discretization of the Navier-Stokes equations

is given by [13]

dri

dt
= vi, (3a)

ρi = mi

∑
j

Wij , (3b)

dvi

dt
= − 1

mi

∑
j

(
pi

σ2
i

+
pj

σ2
j

)
∂Wij

∂rij
eij +

η

mi

∑
j

(
1

σ2
i

+
1

σ2
j

)
vij

rij

∂Wij

∂rij
. (3c)

Here, ri and mi are the position and mass of a particle, respectively, with

index i, Wij is a kernel function, σi is the inverse of the particle volume, eij

and rij are the normalized vector and distance from particle i to particle j,

respectively. In order to close these equations, an isothermal equation of state

for the pressure is given as

p = p0

(
ρ

ρ0

)γ

+ b, (4)

where p0, ρ0, b and γ are parameters which may be chosen based on a scale

analysis so that the density variation is less than a given value. When a suf-

ficiently stiff equation of state is used (usually γ = 7), mutual penetration of

particles is prevented, and an almost incompressible fluid behavior is repro-

duced.

Within the SDPD formulation [1,13,14], Eq. (3) represents the deterministic

part of the particle dynamics. Using the GENERIC formalism [15,16] thermal

fluctuations can be taken into account by postulating the following expressions
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for mass and momentum fluctuations

dm̃i = 0, (5a)

dP̃i =
∑
j

BijdW ijeij , (5b)

where dW ij is the traceless symmetric part of a tensor of independent incre-

ments of a Wiener process, and Bij is defined as

Bij =

[
−4kBTη

(
1

σ2
i

+
1

σ2
j

)
1

rij

∂W

∂rij

]1/2

. (6)

Some important properties of this particular set of equations are:

• total mass and momentum are exactly conserved;

• linear momentum is also locally conserved due to the anti-symmetry of the

discretization;

• because the model has been developed within the GENERIC framework,

it can be shown that the fluid system conserves total energy, and the total

entropy is a monotonically increasing function of time [1].

3 Time step limitations

For numerical stability of the velocity-Verlet algorithm, the time-step size is

constrained by the following conditions: (1) Courant-Friedrichs-Lewy (CFL)

condition

∆t ≤ ∆tc = 0.25
h

c
, (7)

where c is the maximum speed of sound and h is the smoothing length; (2) a

time step constraint based on the viscous diffusion

∆t ≤ ∆tµ = 0.125
h2

µ
. (8)
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As was noticed by Morris et al. [17], for typical microfluidic simulations char-

acterized by very small Reynolds numbers, condition (8) is dominant. It is

therefore desirable to employ a time-integration scheme which relaxes the vis-

cous time-step limit ∆tµ.

One possible approach is to integrate equation (3) by a fully implicit integra-

tion scheme. Pagonabarraga et al. [18] found that such a method, employed

for DPD, is not very practical due to large computational cost. Monaghan [12]

described an implicit integration scheme for handling the interaction between

dust and gas particles. The key feature of the method is to treat each pair

interaction separately and update their velocities implicitly. The process is

iterated by sweeping over all the pairs of interacting particles a certain num-

ber of times. More recently, a semi-implicit scheme for DPD was proposed by

Shardlow [11], based on replacing the relative velocity at time step n with a

semi-implicit velocity. In the work of Nikunen et al. [19] the accuracy and per-

formance of Shardlow’s scheme was tested and found to be superior to several

other schemes commonly used in DPD.

In this work we present a novel implicit method which can be viewed as a

combination of the Shardlow and the Monaghan scheme applied to SDPD.

We analyze the performance of the method for conditions which are typi-

cal for microfluidic simulations, and in particular we address the previously

mentioned Schmidt number problem [9].
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4 Semi-implicit integration scheme

In the description of the integration scheme the following notation will be

used:

dvi =
1

mi

(
FC

i dt + FD
i dt + FR

i

√
dt
)
, (9a)

dri = vidt, (9b)

where F
{C,D,R}
i =

∑
j F

{C,D,R}
ij are the resulting conservative, dissipative and

random forces acting on particle i expressed as a sum of contributions from all

interacting particles. From a mathematical point of view equations (9a) and

(9b) represent a system of stochastic differential equations (SDE).

The standard velocity-Verlet scheme is characterized by an explicit calculation

of all forces on the right hand side of (9a). Intermediate velocity values are

used for the force calculations, which are corrected at the end of each time

step (Predictor-Corrector approach). The method gives satisfactory results in

many application but the time-step size must satisfy both conditions (8) and

(7).

In this paper an alternative time marching scheme is described. The key idea

is to split the integration process in such a way that the conservative forces

are calculated separately from the dissipative and the random forces. For the

conservative terms the common explicit or semi-implicit techniques for SPH

can be used. The random and viscous forces (fluctuation-dissipation part) are

updated in a pairwise fashion from the particle states at a given time. The

structure of the resulting pair interaction is very simple, and it is possible to

obtain an implicit method that conserves momentum. In order to develop the

new model and clarify its relation to existing implicit methods, in the following
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we first give a brief overview of Monaghan’s and Shardlow’s schemes.

Monaghan’s scheme [12]: The method involves a sweep over all pairs of

neighboring particles repeated a certain number of times (Ns). Let us consider

one specific pair at a given time; the correspondent velocities change according

to the following implicit rule (tildes denote new values)

ṽi = vi +
1

2

1

mi

F̃D
ij

∆t

Ns

, (10a)

ṽj = vj − 1

2

1

mi
F̃D

ij

∆t

Ns
, (10b)

Both particles in the pair are updated simultaneously. Obviously the method

conserves linear and angular momentum. Within this loop, for the next consid-

ered pair we use the already updated velocity values rather than their values

at the beginning of the time step.

In order to increase the accuracy in the case of very high viscosities, besides

the backward Euler scheme (10) also a two-stage integration scheme can be

used [12]. Note that for η → ∞ the resulting velocities at the end of a single

pair-step are

ṽj = ṽi =
mivi + mjvj

mi + mj
, (11)

which is the average initial velocity of the two particles, and follows physical

intuition for very viscous flow.

Shardlow’s scheme [11]: This scheme applies formal methods from the the-

ory of SDE to the equations of motion in DPD [20]. A Trotter expansion gives

a factorized integration scheme similar to that of Monaghan but involving

additional random terms in the pair update step. In particular, Shardlow’s

approach does not use multiple sweeping, instead it describes a first-order

(S1) and a second-order splitting (S2) by employing a Strang expansion as

9



alternative to the first-order Trotter splitting.

Splitting scheme for SDPD: Now we develop the new semi-implicit time-

integration scheme. The dissipation term in the SDPD equations (3c) is dif-

ferent from the one used by Monaghan and in the one DPD. Following the

arguments of Shardlow, we can write the fluctuation-dissipation terms as

dvi =
1

mi
FD

ij

dt

Ns
+

1

mi
FR

ij

dt

Ns
, (12a)

dvj = − 1

mj

FD
ij

dt

Ns

− 1

mj

FR
ij

dt

Ns

, (12b)

where Ns is a number of sweeps. This feature of the method we borrowed from

Monaghan scheme and found that it considerably decreases overall computa-

tional effort especially in case of high viscosity. One possible particle-pair form

of the fluctuation-dissipation operator is [11]:

ṽi = vi +
1

2

1

mi

F̃D
ij

∆t

Ns

+
1

2

1

mi

FR
ij

∆t

Ns

, (13a)

ṽj = vj − 1

2

1

mj
F̃D

ij

∆t

Ns
− 1

2

1

mj
FR

ij

∆t

Ns
, (13b)

where tilde denotes updated variables at the end of the current sweep. Since

F̃D
ij is a linear function of ṽi and ṽj equation (13)can be solved explicitly to

obtain the updated velocities.

The overall semi-implicit scheme can now be stated:

(I) Perform Ns times sweep over all particle pairs with the following oper-

ations:

(a) Explicit part of the velocity update:

vi ←− vi +
1

2

1

mi
FD

ij

∆t

Ns
+

1

2

1

mi
FR

ij

∆t

Ns
, (14a)

vj ←− vj − 1

2

1

mj
FD

ij

∆t

Ns
− 1

2

1

mj
FR

ij

∆t

Ns
, (14b)
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(b) Implicit part of the velocity update: F̃D
ij being a linear function of

the velocity at the next time step, the following equations can be

easily solved for the velocity updates:

ṽi = vi +
1

2

1

mi
F̃D

ij

∆t

Ns
+

1

2

1

mi
FR

ij

∆t

Ns
, (15a)

ṽj = vj − 1

2

1

mj
F̃D

ij

∆t

Ns
− 1

2

1

mj
FR

ij

∆t

Ns
, (15b)

(II) For all particles update the velocity explicitly by half of conservative

force (first part of velocity-Verlet scheme):

vi ←− vi +
1

2

1

m
FC

i ∆t. (16)

(III) For all particles update the positions explicitly:

ri ←− ri + vi∆t. (17)

(IV) For all particles calculate conservative force:

FC
i (rij) (18)

(V) For all particles update the velocities explicitly with half of the con-

servative force (second part of velocity-Verlet scheme):roviderp-down

mesoscopic simulations.Opera

vi ←− vi +
1

2

1

m
FC

i ∆t. (19)

(VI) Proceed to the next time step.

Following the arguments of Shardlow [11] we can conclude that the method is

first-order accurate in time. Higher-order methods can be obtained by using

S2-schemes analogously to those presented in [11].

From numerical experiments, we have found that the number of sweeps Ns
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strongly affects the accuracy of the results. For optimum accuracy we have

employ the Adaptive Sweeping Scheme of Whitehouse et. al. [21] which can be

summarized as follows: for every time step we perform consecutively Ns = 2m

and Ns = 2m+1 sweeps with m increasing until the relative error between

the evaluated velocities is less then a specific dimensionless tolerance ε. The

last calculated velocity is adopted and at the next time step the index m is

decreased by one. We have found that a tolerance ε = 5× 10−3 gives a good

compromise between computational efficency and accuracy.

The relaxed viscous stability on one hand allows for large time-step sizes, while

on the other hand may increase the temporal truncation error. In the following

section we show that for typical microfluidic conditions the method gives good

overall accuracy for simulations performed without thermal fluctuations, and

allows for simulations at very large Sc number when thermal fluctuations are

included.

5 Validation of the splitting SDPD scheme

In this section simulations of the Couette and Poiseuille flows are performed in

order to validate the scheme described above. We measure the overall accuracy

by using an L1-norm error defined as

L1 =

∑N
i=1

∣∣∣U th
i − USDPD

i

∣∣∣∑N
i=1

∣∣∣U th
i

∣∣∣ (20)

where U th
i and USDPD

i are components of the theoretical and the simulated

velocity fields evaluated at the particle positions ri, respectively, and N is the

total number of particles.
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5.1 Poiseuille Flow

For the Poiseuille test case we consider a laminar flow between two infinite

parallel plates placed at y = 0 and y = L. The flow is initially at rest and it is

suddenly driven by a constant body force F parallel to the x-axis. Following

Morris [17] we chose the following simulation parameters F = 10−4 m/s2 and

L = 10−3 m. The density and kinematic viscosity are ρ = 103 kg/m3 and

µ = 10−6 m2/s, respectively. The maximum velocity at steady state is

Vmax =
FL2

8µ
, (21)

which gives a Reynolds number

Re =
Lvmax

η
= 1.25× 10−2. (22)

According to (21), the speed of sound is chosen in order to keep the Mach

number equal to 0.1

c = 10Vmax. (23)

A series of simulations is performed for Ny = 10, 20, 40, 80 particles spanning

the y-direction, using the scheme described in the section 4 with ε = 5× 10−3

and a time step ∆t = 3.125× 10−4 = 4∆tµ.

In Fig. 1(top) a comparison for velocity profiles at time tm = 0.63 s from

the theoretical solution and the SDPD solution are shown. At this time the

velocity profile is found to be very close to the steady state solution for t =∞.

Fig. 2 (top) and Fig. 3(top) show the behavior of the L1-error for increasing

space and time resolution. At least first-oder convergence is observed.
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5.2 Couette flow

For the Couette test case we consider a laminar flow between two infinite

parallel plates, one of which is moving at constant speed. We locate the moving

plate at y = L and denote the constant velocity as V0.

Following Morris [17] we chose the following simulation parameters which

are typical for microfluidic systems: µ = 10−6 m2/s, V0 = 1.25× 10−5 m/s,

L = 10−3 m and ρ = 103 kg/m3. The corresponding Reynolds number is, as in

the previous case,

Re =
V0L

µ
= 1.25× 10−2. (24)

We chose the speed of sound, again, ten times larger than V0

c = 1.25× 10−4 m/s, (25)

and perform simulations for the same resolution as for the Poiseuille flow. A

specific time instant tm = 0.16 s is considered where the SDPD solution and

the analytical solution are compared. Fig. 1(bottom) shows the two velocity

profiles while in Fig. 2 (bottom) and 3 (bottom) the L1-norm (20) is plotted

at the given time for increasing space and time resolution. Again, first-order

convergence of the results is obtained.

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]
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5.3 Temperature control and solvent simulations

The temperature control is an important test of the method. We expect time-

averages of the measured kinetic temperature to converge to the input tem-

perature. We take kBT = 1 kg·m2/s2, box size L = 1.25 m, mass density

ρ = 1 kg/m3, number of particles N = 15 × 15 × 15 = 3375, which give the

input average thermal velocity of the particles is vi
kin =

√
3kBT/m (m is mass

of one particle). The speed of sound used in our simulations is c = 5vkin The

time step was limited according to the CFL condition (7), while the number of

sweeps Ns = 4. We found that the choice Ns = 1, besides of inaccurate kinetic

temperatures, produces also unphysical collisions between particles (which is

also observed in [22] for DPD).

The behavior of the average kinetic temperature Tkin = mvs
kin/3kB, where

vs
kin is the computed average thermal velocity of the particles, for increasing

number of sweeps Ns is shown in the figure 4.

[Fig. 4 about here.]

Convergence of the measured kinetic temperature towards the input value

Tth is observed for increasing Ns. Fig. 4 shows also that our choice Ns = 4

introduces error below 5% which is reasonably small. Another validation test

for our scheme is represented by the shape of the radial distribution functions

(RDF) of the fluid particles describing the solvent. We find that the RDF is

not affected by the implicit treatment of the viscous terms and preserves the

shape which is typical for liquids, see fig. 5.

[Fig. 5 about here.]
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6 Polymer in shear flow

In this section we study the effect of the Schmidt number on the properties

of a polymer chain in equilibrium and in a steady-shear flow. As already

described in [7], we use FENE potentials to model the interactions between

SDPD particles representing neighboring beads of the polymer molecule

UFENE = −1

2
kR2

0 ln

(
1−

(
r

R0

)2
)

, (26)

where r is the instantaneous distance between neighboring beads, R0 is the

maximum spring extension and k is the spring constant. The FENE force is

superimposed on the hydrodynamic interactions of each polymer-bead and

produces the correct scaling laws for static and dynamic properties according

to the Zimm theory, see [7] for more details.

Table 1 summarizes the values of Sc and average gyration radii obtained from

the simulations for different values of input viscosities. The first conclusion

is that the average size of the polymer at equilibrium is nearly independent

of Sc over a variation range of approximately 1000. The data for the shear

flow imply that the polymer is affected by the Schmidt number of the solvent,

producing deviations in
〈
Rflow

g

〉
on the order of 50% over the same range of

Sc . The results are in good agreement with the conclusions of [9].

[Table 1 about here.]
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7 Polymer in Poiseuille flow

The simulation of a polymer in Poiseuille flow is set up in a box with dimen-

sions Lx × Ly × Lz with Ly = 4.0, Lz = 8.0, and Lx = 4.0 is the distance be-

tween the walls (at y = 0 and y = Ly). The flow is driven by a body force in the

direction of the z axis. Periodic boundary conditions are employed in the flow

and span-wise directions. The number of particles is Nx×Ny×Nz = 10×10×20

and 20 of them were connected by FENE spring as a model of the polymer.

Following [23] we assume a volume fraction of the polymer φ = 0.01 as a good

model for a dilute solution. To illustrate the effect of Schmidt number on the

distribution of the polymer beads in the channel we perform two simulations

with Schmidt numbers of 4.8 and 43, respectively.

In Figure 6 the span wise distribution of polymer mass is shown. We find

that the profile is affected by Schmidt number: for lower Schmidt number the

depletion region at the center of the channel is more pronounced; for higher

Schmidt number the polymer concentration tends to be higher in the center

with smaller off-center peaks. These results are in agreement with that in the

recent study of Millan et. al [23].

[Fig. 6 about here.]

8 Concluding remarks

We have developed a semi-implicit splitting scheme for highly dissipative

SDPD method which is the combination and modification of the Monaghan’s

scheme for SPH method and Shardlow’s scheme for DPD method. To achieve
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higher accuracy, the number of sweeps in the present scheme is adjusted adap-

tively. Numerical experiments show that the present scheme has a great po-

tential in addressing the issue of relatively large Schmidt number. Unlike tra-

ditional velocity-Verlet algorithms for which the simulations result to be im-

practical for Schmidt number higher than O(1) [24], all the simulations shown

here require the same computational CPU time but several orders of mag-

nitude in the Schmidt number of O(105) can be gained allowing for realistic

computations of diffusive flow problems.

References
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[15] M. Grmela, H. Öttinger, Dynamics and thermodynamics of complex fluids. I.

Development of a general formalism, Phys. Rev. E 56 (6) (1997) 6620–6632.
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Sc 〈Rg〉
〈
Rflow

g

〉
1.225e3 0.0048 0.0057

2.5e3 0.0052 0.0058

2.5e5 0.0048 0.0092

1.0e6 0.0048 0.0120
Table 1
Comparison of behavior of free polymer and polymer in a steady shear flow: kBT =
1, γ̇ = 0.5
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